Polysome bound mRNA Seq analysis of tolerant (APO) and susceptible (IR64) variety of Oryza sativa cv. Indica under 50% drought
Ontology highlight
ABSTRACT: Plants evolved several acquired tolerance traits for drought stress adaptation to maintain the cellular homeostasis. The combination of constitutive and acquired traits governs drought tolerance, which is crucial for maintaining crop productivity under drought. Drought affects protein synthesis, to uncover the translational landscape with response to drought stress in rice, polysome bound mRNA sequencing at anthesis stage in resistant APO and sensitive IR64 genotypes were performed. Our results demonstrate that drought tolerant genotype maintains higher transcripts bound to poly-ribosomes which facilitate higher protien synthesis which impacted on photosynthesis, spikelet fertility, seed filing and yield under drought stress. We identified many novel LncRNAs and relevant genes associated with translation which can play important role in manitaing grain protein content with drought tolerance.
Project description:Integrated breeding strategies are used to increase both the yield potential and stability of crops. Most of these approaches have a direct genetic basis. The utility of epigenetics in breeding to improve complex traits such as yield and stress tolerance is not clear. A better understanding of the status of the epigenome and its contribution to the agronomic performance would help in developing strategies to incorporate the epigenetic component of complex traits in breeding,Starting from isogenic canola lines, epilines were generated by selecting recursively during three generations for lines with a higher energy use efficiency and drought tolerance. These epilines were more energy use efficient, drought tolerant, high nitrogen use efficient, and higher yielding under suboptimal conditions. Moreover, these characteristics were transgenerational inheritable. Transcriptome comparison with a line selected for energy use efficiency only revealed common differentially expressed genes related to the onset of signaling events regulating stress tolerance. Genes related to salt, osmotic, abscisic acid and drought were specifically differentially expressed in the drought tolerant epilines. The status of the epigenome, scored as differential trimethylation of lysine 4 of histone 3, supports the energy use efficient and drought tolerant phenotype by facilitating transcription of the genes that are found to be differentially expressed.From these results it can be concluded that the epigenome can be shaped by selection to increase yield and stress tolerance. This acquired knowledge will support further development of strategies to incorporate epigenetics in breeding. To investigate the epigenetic effect on histone mark distribution of the EUE/PEG selection we performed ChIP-seq analyses. Native ChIP using an anti-H3K4me3 and no antibody (background control) was done on PEG1 and control plants.
Project description:Integrated breeding strategies are used to increase both the yield potential and stability of crops. Most of these approaches have a direct genetic basis. The utility of epigenetics in breeding to improve complex traits such as yield and stress tolerance is not clear. A better understanding of the status of the epigenome and its contribution to the agronomic performance would help in developing strategies to incorporate the epigenetic component of complex traits in breeding,Starting from isogenic canola lines, epilines were generated by selecting recursively during three generations for lines with a higher energy use efficiency and drought tolerance. These epilines were more energy use efficient, drought tolerant, high nitrogen use efficient, and higher yielding under suboptimal conditions. Moreover, these characteristics were transgenerational inheritable. Transcriptome comparison with a line selected for energy use efficiency only revealed common differentially expressed genes related to the onset of signaling events regulating stress tolerance. Genes related to salt, osmotic, abscisic acid and drought were specifically differentially expressed in the drought tolerant epilines. The status of the epigenome, scored as differential trimethylation of lysine 4 of histone 3, supports the energy use efficient and drought tolerant phenotype by facilitating transcription of the genes that are found to be differentially expressed.From these results it can be concluded that the epigenome can be shaped by selection to increase yield and stress tolerance. This acquired knowledge will support further development of strategies to incorporate epigenetics in breeding.
Project description:Integrated breeding strategies are used to increase both the yield potential and stability of crops. Most of these approaches have a direct genetic basis. The utility of epigenetics in breeding to improve complex traits such as yield and stress tolerance is not clear. A better understanding of the status of the epigenome and its contribution to the agronomic performance would help in developing strategies to incorporate the epigenetic component of complex traits in breeding,Starting from isogenic canola lines, epilines were generated by selecting recursively during three generations for lines with a higher energy use efficiency and drought tolerance. These epilines were more energy use efficient, drought tolerant, high nitrogen use efficient, and higher yielding under suboptimal conditions. Moreover, these characteristics were transgenerational inheritable. Transcriptome comparison with a line selected for energy use efficiency only revealed common differentially expressed genes related to the onset of signaling events regulating stress tolerance. Genes related to salt, osmotic, abscisic acid and drought were specifically differentially expressed in the drought tolerant epilines. The status of the epigenome, scored as differential trimethylation of lysine 4 of histone 3, supports the energy use efficient and drought tolerant phenotype by facilitating transcription of the genes that are found to be differentially expressed.From these results it can be concluded that the epigenome can be shaped by selection to increase yield and stress tolerance. This acquired knowledge will support further development of strategies to incorporate epigenetics in breeding.
Project description:Integrated breeding strategies are used to increase both the yield potential and stability of crops. Most of these approaches have a direct genetic basis. The utility of epigenetics in breeding to improve complex traits such as yield and stress tolerance is not clear. A better understanding of the status of the epigenome and its contribution to the agronomic performance would help in developing strategies to incorporate the epigenetic component of complex traits in breeding,Starting from isogenic canola lines, epilines were generated by selecting recursively during three generations for lines with a higher energy use efficiency and drought tolerance. These epilines were more energy use efficient, drought tolerant, high nitrogen use efficient, and higher yielding under suboptimal conditions. Moreover, these characteristics were transgenerational inheritable. Transcriptome comparison with a line selected for energy use efficiency only revealed common differentially expressed genes related to the onset of signaling events regulating stress tolerance. Genes related to salt, osmotic, abscisic acid and drought were specifically differentially expressed in the drought tolerant epilines. The status of the epigenome, scored as differential trimethylation of lysine 4 of histone 3, supports the energy use efficient and drought tolerant phenotype by facilitating transcription of the genes that are found to be differentially expressed.From these results it can be concluded that the epigenome can be shaped by selection to increase yield and stress tolerance. This acquired knowledge will support further development of strategies to incorporate epigenetics in breeding. SRA study accession: SRP052946, Bioproject: PRJNA273932. Two canola (Brassica napus L. spp. oleifera (Metzg) Sinsk. f. biennis) epilines with low respiration and high NAD(P)H content were selected. Grinded leaf material from 26 day-old control and both epilines was collected in triplicate and served as input for deep sequencing on Illumina GAIIx.
Project description:Drought is one of the major abiotic stresses threatening rice (Oryza sativa) production worldwide. Drought resistance is controlled by multiple genes, and therefore, a multi-gene genetic engineering strategy is theoretically useful for improving drought resistance. However, the experimental evidence for such a strategy is still lacking. In this study, a few drought-responsive genes from rice were assembled by a multiple-round site-specific assembly (MISSA) system, and the constructs were introduced into the rice cultivar KY131 via Agrobacterium-mediated transformation. The transgenic lines of the multi-gene and corresponding single-gene constructs were pre-evaluated for drought resistance. We found that the co-overexpression of two genes, encoding a constitutively active form of a bZIP transcription factor (OsbZIP46CA1) and a protein kinase (SAPK6) involved in the abscisic acid (ABA) signaling pathway, showed significantly enhanced drought resistance compared with the single-gene transgenic lines and the negative transgenic plants. Single-copy lines of this bi-gene combination (named XL22) and the corresponding single-gene lines were further evaluated for drought resistance in the field using agronomical traits. The results showed that XL22 exhibited greater yield, biomass, spikelet number, and grain number under moderate drought stress conditions. The seedling survival rate of XL22 and the single-gene overexpressors after drought stress treatment also supported the drought resistance results. Furthermore, expression profiling by RNA-Seq revealed that many genes involved in the stress response were specifically up-regulated in the drought-treated XL22 lines and some of the stress-related genes activated in CA1-OE and SAPK6-OE were distinct, which could partially explain the different performances of these lines with respect to drought resistance. In addition, the XL22 seedlings showed improved tolerance to heat and cold stresses. Our results demonstrate that the multi-gene assembly in an appropriate combination may be a promising approach in the genetic improvement of drought resistance.
Project description:Plants have evolved to possess adaptation mechanism to cope with drought stress by reprograming transcriptional networks through drought responsive transcription factors, which in turn mediate morphological and physiological changes. NAM, ATAF1-2, and CUC2 (NAC) transcription factors are known to be associated with various developmental processes and stress tolerance. In this study, we functionally characterized the rice drought responsive NAC transcription factor OsNAC14. OsNAC14 was predominantly induced at meiosis stage, and induced by drought, high salinity, ABA and low temperature in leaves than roots. Overexpression of OsNAC14 resulted in drought tolerance at the vegetative growth stage and enhanced filling rate at vegetative growth. OsNAC14 overexpression elevated expression of genes related to DNA damage repair, defense response, strigolactone biosynthesis, which correlated with resistance to drought tolerance. Furthermore, OsNAC14 directly bound to the promoter of drought inducible OsRAD51A1, a key component in homologous recombination in DNA repair system. These results indicate that OsNAC14 mediate drought tolerance by recruiting factors involved in DNA damage repair and defense response to enable plant to protect from cellular damage caused by drought stress, thereby provide mechanism for drought tolerance.
Project description:The evolution of maize yields under drought is of particular concern in the context of climate change and human population growth. To better understand the mechanisms associated with the genetic polymorphisms underlying the variations of traits related to drought tolerance, we used a systems genetics approach integrating high-throughput phenotypic, proteomics and genomics data acquired on 254 maize hybrids grown under two watering conditions. We show that the genetic architecture of protein abundances depends on protein function and that water deficit strongly remodeled the proteome and induced a reprogramming of the genetic control of the abundances of proteins involved in drought and stress response. These findings bring several lines of evidence supporting candidate genes at many loci and provide novel insight into the molecular mechanisms of drought tolerance.
Project description:Background: Drought stress is the major environmental stress that affects plant growth and productivity. It triggers in plants a wide range of responses detectable at different scales: molecular, biochemical and physiological levels. At the molecular level the response to drought stress results in the differential expression of several metabolic pathways. For this reason, explore the subtle differences existing in gene expression of drought sensitive and drought tolerant genotypes allows to identify drought-related genes that could be used for selection of drought tolerance traits. Genome-wide RNA-Seq technology was used to compare the drought response of two sorghum genotypes characterized by contrasting water use efficiency. Results: the physiological measurements carried out confirmed the drought sensitivity of IS20351 and the drought tolerance of IS22330 previously studied. The expression of drought-related genes was more abundant in the sensitive genotype IS20351 compared to the tolerant IS22330. The Gene Ontology enrichment highlighted a massive increase in transcript abundance in “response to stress” and “abiotic stimulus”, “oxidation-reduction reaction” in the sensitive genotype IS20351 under drought stress. “Antioxidant” and “secondary metabolism”, “photosynthesis and carbon fixation process”, “lipids” and “carbon metabolism” were the pathways most affected by drought in the sensitive genotype IS20351. The sensitive genotype IS20351 showed under well-watered conditions a lower constitutive expression level of “secondary metabolic process” (GO:0019748) and “glutathione transferase activity” (GO:000004364). Conclusions: RNA-Seq analysis revealed to be a very useful tool to explore differences between sensitive and tolerant sorghum genotypes. The transcriptomic results supported all the physiological measurements and were crucial to clarify the tolerance of the two genotypes studied. The connection between the differential gene expression and the physiological response to drought states unequivocally the drought tolerance of the genotype IS22330 and the strategy adopted to cope with drought stress.
Project description:Rice reproductive development is highly sensitive to high temperature stress. In rice flowering occurs over a period of at least 5 days. Heat stress alters the global gene expression dynamics in panicle especially during pollen development, anthesis and grain filling. Some of the rice genotypes like Nagina 22 show better spikelet fertility and grain filling compared to high yielding and popular rice cultivars like IR 64. We carried out microarray analysis of 8 days heat stressed panicles of Nagina22, heat and drought tolerant aus rice cultivar and IR64, a heat susceptible indica genotype along with unstressed samples of Nagina22 and IR64 so as to understand the transcriptome dynamics in these two genotypes under heat stress and to identify the genes important for governing heat stress tolerance in rice.
Project description:Transcription factors play a crucial regulatory role in plant drought stress responses. In this study, a novel drought stress related bZIP transcription factor, OsbZIP62, was identified in rice. This gene was selected from transcriptome analysis of several typical rice varieties with different drought tolerance. The expression of OsbZIP62 was obviously induced by drought, hydrogen peroxide, and abscisic acid (ABA) treatment. Overexpression of OsbZIP62-VP64 (OsbZIP62V) enhanced the drought tolerance and oxidative stress tolerance of transgenic rice, while the osbzip62 mutants showed the opposite phenotype. RNA-seq analysis showed that many stress-related genes (e.g. OsGL1, OsNAC10, and DSM2) were up-regulated in OsbZIP62V plants. OsbZIP62 could bind to the abscisic acid–responsive element (ABRE) and promoters of several putative target genes. Taken together, OsbZIP62 positively regulated rice drought tolerance through regulated the expression of genes associated with stress.