Massively parallel screen uncovers many rare 3’ UTR variants regulating mRNA abundance of cancer driver genes [rare_3utr_gnomad.motif_activity]
Ontology highlight
ABSTRACT: Understanding the function of rare non-coding genetic variants represents a significant challenge. Here, we developed MapUTR, a screen to identify rare 3’ UTR variants affecting mRNA abundance post-transcriptionally. Among 17,301 rare variants, an average of 24.5% were functional, with 70% in cancer-related genes, many in critical cancer pathways. This observation motivated a further interrogation of 11,929 cancer somatic mutations, uncovering 3,928 (33%) functional mutations in well-established cancer driver genes, such as CDKN2A. Functional MapUTR variants were enriched in miRNA targets and protein-RNA interaction sites. Based on MapUTR, we define a new metric, untranslated tumor mutation burden (uTMB), reflecting the amount of somatic functional MapUTR variants of a tumor. We showed the potential of uTMB in predicting patient survival. Through prime editing, we characterized three variants in cancer-relevant genes (MFN2, FOSL2, and IRAK1), illustrating their cancer-driving potential. Our study elucidates the function of thousands of non-coding variants, nominates non-coding cancer driver mutations, and demonstrates their potential contributions to cancer.
ORGANISM(S): Homo sapiens
PROVIDER: GSE232571 | GEO | 2024/02/06
REPOSITORIES: GEO
ACCESS DATA