A female mosquito salivary protein-driven influx of myeloid cells facilitates flavivirus transmission
Ontology highlight
ABSTRACT: Mosquitoes transmit many flaviviruses of global public health significance. Efficient viral transmission to mammalian hosts requires mosquito salivary factors that modulate local host responses, such as recruitment of virus-permissive myeloid cells to the bite sites. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we showed that a female mosquito salivary gland-specific protein, named Aedes aegypti Neutrophil Recruitment Protein (AaNRP), acts as a key salivary component to facilitate the transmission of Zika (ZIKV) and dengue (DENV) viruses. AaNRP promotes a rapid influx of neutrophils followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitate establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB with dietary resveratrol, a phytochemical, neutralizes the AaNRP effects, thus reducing flavivirus transmission by mosquitoes. This study offers mechanistic insight into saliva-aided viral transmission and provides a potential prophylactic target.
ORGANISM(S): Mus musculus
PROVIDER: GSE232756 | GEO | 2023/05/18
REPOSITORIES: GEO
ACCESS DATA