Improved RNA stability estimation through Bayesian modeling reveals most bacterial transcripts have sub-minute half-lives [CLIP-seq]
Ontology highlight
ABSTRACT: RNA decay is a crucial mechanism for regulating gene expression in response to environmental stresses. In bacteria, RNA-binding proteins (RBPs) are known to be involved in post-transcriptional regulation, but their global impact on RNA half-lives has not been extensively studied. To shed light on the role of the major RBPs ProQ and CspC/E in maintaining RNA stability, we performed RNA sequencing of Salmonella enterica over a time course following treatment with the transcription initiation inhibitor rifampicin (RIF-seq) in the presence and absence of these RBPs. We developed a hierarchical Bayesian model that corrects for confounding factors in rifampicin RNA stability assays and enables us to identify differentially decaying transcripts transcriptome-wide. Our analysis revealed that the median RNA half-life in Salmonella in early stationary phase is less than 1 minute, a third of previous estimates. We found that over half of the 500 most long-lived transcripts are bound by at least one major RBP, suggesting a general role for RBPs in shaping the transcriptome. Integrating differential stability estimates with CLIP-seq revealed that approximately 30% of transcripts with ProQ binding sites and more than 40% with CspC/E binding sites in coding or 3' untranslated regions decay differentially in the absence of the respective RBP. Analysis of differentially destabilized transcripts identified a role for both proteins in the control of respiration, and for ProQ in the oxidative stress response. Our findings provide new insights into post-transcriptional regulation by ProQ and CspC/E, and the importance of RBPs in regulating gene expression.
Project description:RNA decay is a crucial mechanism for regulating gene expression in response to environmental stresses. In bacteria, RNA-binding proteins (RBPs) are known to be involved in post-transcriptional regulation, but their global impact on RNA half-lives has not been extensively studied. To shed light on the role of the major RBPs ProQ and CspC/E in maintaining RNA stability, we performed RNA sequencing of Salmonella enterica over a time course following treatment with the transcription initiation inhibitor rifampicin (RIF-seq) in the presence and absence of these RBPs. We developed a hierarchical Bayesian model that corrects for confounding factors in rifampicin RNA stability assays and enables us to identify differentially decaying transcripts transcriptome-wide. Our analysis revealed that the median RNA half-life in Salmonella in early stationary phase is less than 1 minute, a third of previous estimates. We found that over half of the 500 most long-lived transcripts are bound by at least one major RBP, suggesting a general role for RBPs in shaping the transcriptome. Integrating differential stability estimates with CLIP-seq revealed that approximately 30% of transcripts with ProQ binding sites and more than 40% with CspC/E binding sites in coding or 3' untranslated regions decay differentially in the absence of the respective RBP. Analysis of differentially destabilized transcripts identified a role for both proteins in the control of respiration, and for ProQ in the oxidative stress response. Our findings provide new insights into post-transcriptional regulation by ProQ and CspC/E, and the importance of RBPs in regulating gene expression.
Project description:RNA-binding proteins (RBPs) play important roles in bacterial gene expression and physiology but their true number and functional scope remain little understood even in model microbes. To advance global RBP discovery in bacteria, we here establish glycerol gradient sedimentation with RNase treatment and mass spectrometry (GradR). Applied to Salmonella enterica, GradR confirms many known RBPs by their RNase-sensitive sedimentation profiles, and discovers the FopA protein as a new member of the emerging family of FinO/ProQ-like RBPs. FopA, encoded on resistance plasmid pCol1B9, primarily targets a small RNA associated with plasmid replication. The target suite of FopA dramatically differs from the related global RBP ProQ, revealing context-dependent selective RNA recognition by FinO-domain RBPs. Numerous other unexpected RNase-induced changes in gradient profiles suggest that cellular RNA helps to organize macromolecular complexes in bacteria. By enabling poly(A)-independent generic RBP discovery, GradR provides an important element for building a comprehensive catalogue of microbial RBPs.
Project description:Transposable elements (TEs) have significantly influenced the evolution of transcriptional regulatory networks in the human genome. Post-transcriptional regulation of human genes by TE-derived sequences has been observed in specific contexts, but has yet to be systematically and comprehensively investigated. Here, studied a collection of CLIP-Seq (CrossLinked ImmunoPrecipitation) experiments mapping the RNA binding sites for a diverse set of 46 human proteins across 68 experiments to explore the role of TEs in post-transcriptional regulation genome-wide via RNA-protein interactions. We detected widespread interactions between RNA binding proteins (RBPs) and various families of TE-derived sequence in the CLIP-Seq data. Alignment coverage clustered on specific positions of the TE consensus sequences, illuminating a diversity of TE-specific motifs for many RBPs. Evidence of binding and conservation of these motifs in the nonrepetitive transcriptome suggest that TEs have appropriated existing sequence preferences of the RBP. Upon depletion of the RBPs, transcripts possessing TE-derived binding sites were similarly regulated as those bound in nonrepetitive sequence. However, in a few cases the effect of RBP binding depended on the specific TE family boundM-bM-^@M-^Te.g., the ubiquitously expressed RBP HuR conferred opposite effects on stability to transcripts when bound to Alu elements versus other families. Our meta-analysis suggests a widespread role for TEs in shaping RNA-protein regulatory networks in the human genome. HuR formaldehyde RIP-Seq in K562 cells, with RIP and input sequenced in triplicate.
Project description:RNA-binding proteins (RBPs) are crucial factors of post-transcriptional gene regulation and their modes of action are intensely investigated. At the center of attention are RNA motifs that guide where RBPs bind. However, sequence motifs recognized by RBPs are typically a poor predictor of RBP-RNA interactions in vivo. It is hence believed that many RBPs recognize RNAs as complexes, to increase specificity and regulatory potential. To probe the potential for RBP–RBP complex formation, we assembled a library of 978 mammalian RBPs and used rec-Y2H screening to detect direct interactions between RBPs, sampling >1M possible interactions. We discovered 1994 new interactions and demonstrate that our interaction screening discovers RBP pairs that bind RNAs adjacently. We further find that the mRNA binding region preferences of an RBP can deviate, depending on its adjacently binding interaction partner. Finally, we reveal novel RBP–RBP interaction networks among major RNA processing steps and show that RBP mutations observed in cancer rewire spliceosomal interaction networks.
Project description:The common oral microbe Fusobacterium nucleatum has recently gained attention when it was found to colonize tumors throughout the human body. Fusobacteria are also interesting in regard to bacterial RNA biology as these early-branching species encode many small noncoding RNAs (sRNAs) but lack homologs of the common RNA-binding proteins (RBPs) CsrA, Hfq and ProQ. Here, to search for alternate sRNA-associated RBPs in F. nucleatum, we performed a systematic mass spectrometry analysis of proteins that copurified with 19 different sRNAs. Our approach recovered a 6S RNA-RNA polymerase complex in this species and discovered high enrichment of the KH domain proteins KhpA and KhpB with almost any tested sRNA, including the σE-dependent sRNA FoxI, a regulator of several envelope proteins. KhpA/B act as a dimer to bind sRNAs with low micromolar affinity and influence the cellular stability of several of their targets. RNA-seq analysis and cell biological assays suggest that KhpA/B have several physiological functions, including a strong requirement for ethanolamine utilization. Our RBP search and discovery of KhpA/B as major RBPs in F. nucleatum are important first steps in identifying key players of post-transcriptional control at the root of the bacterial phylogenetic tree.
Project description:Gene regulation at the post-transcriptional level is prevalent in all domains of life. In bacteria, ProQ-like proteins have emerged as important RNA chaperones facilitating RNA stability and RNA duplex formation. In the major human pathogen V. cholerae, post-transcriptional gene regulation is key for virulence, biofilm formation, and antibiotic resistance, yet the role of ProQ has not been studied. Here, we show that ProQ interacts with hundreds of transcripts in V. cholerae, including the highly abundant FlaX small RNA (sRNA). Global analyses of RNA duplex formation using RIL-Seq (RNA interaction by ligation and sequencing) revealed a vast network of ProQ-assisted interactions and identified a role for FlaX in motility regulation. Specifically, FlaX base-pairs with multiple sites on the flaB flagellin mRNA, preventing 30S ribosome binding and translation initiation. V. cholerae cells lacking flaX display impaired motility gene expression, altered flagella composition, and reduced swimming in liquid environments. Our results provide a global view on ProQ-mediated RNA duplex formation and pinpoint the mechanistic and phenotypic consequences associated with ProQ-associated sRNAs in V. cholerae.
Project description:Post-transcriptional regulation in eukaryotes requires cis- and trans-acting features and factors including RNA secondary structure, and RNA-binding proteins (RBPs). However, a comprehensive view of the structural and RBP interaction landscape of RNAs in the nucleus has yet to be compiled for any organism. Here, we use our ribonuclease-mediated structure and RBP binding site mapping approach on Arabidopsis seedling nuclei in vivo to globally profile these features within the nuclear compartment. We reveal opposing patterns of secondary structure and RBP binding levels throughout native messenger RNAs that demarcate alternative splicing and polyadenylation. We also uncover a collection of protein bound sequence motifs, and identify their structural contexts, co-occurrences in transcripts encoding functionally related proteins, and interactions with putative RBPs. Finally, we identify a nuclear role for the chloroplast RBP, CP29A. In total, we provide the first simultaneous view of the RNA secondary structure and RBP interaction landscapes in a eukaryotic nucleus. Protein interaction profile sequencing (PIP-seq) in Arabidopsis seedling nuclei. These are crosslinked with formaldehyde and treated with two RNases (ssRNase and dsRNase) with two replicates
Project description:RNA decay was measured in Prochlorococcus after inhibition of transcription by rifampicin using customized Affymetrix gene expression arrays. RNA turnover plays an important role in the gene regulation of microorganisms and influences their speed of acclimation to environmental changes. We investigated whole-genome RNA stability of Prochlorococcus, a relatively slow-growing marine cyanobacterium doubling approximately once a day, which is extremely abundant in the oceans. Using a combination of microarrays, quantitative RT-PCR and a new algorithm for determining RNA decay rates, we found a median half-life of 2.4 min and a median decay rate of 2.6 min for expressed genes â two-fold faster than that reported for any organism. The shortest transcript half-life (33 seconds) was for a gene of unknown function, while some of the longest (ca. 18 min) were for highly expressed genes. Genes organized in operons displayed intriguing mRNA decay patterns, such as increased stability, and delayed onset of decay with greater distance from the transcriptional start site. The same phenomenon was observed on a single probe resolution for genes greater than 2 kb. We hypothesize that the fast turnover relative to generation time in Prochlorococcus may enable a swift response to environmental changes through rapid recycling of nucleotides, which could be advantageous in nutrient poor oceans. Our growing understanding of RNA half-lives will inform on the modelling of cell processes and help interpret the growing bank of metatranscriptomic studies of wild populations of Prochlorococcus. The surprisingly complex decay patterns of large transcripts reported here, and the method developed to describe them, will open new avenues for the investigation and understanding of RNA decay for all organisms. Prochlorococcus cells were treated with rifampicin, which prevents initiation of new transcripts. Cells were harvested at 0 min (before rifampicin addition), 2.5 min, 5 min, 10 min, 20 min, 40 min and 60 min after rifampicin addition.
Project description:The common oral microbe Fusobacterium nucleatum has recently gained attention when it was found to colonize tumors throughout the human body. Fusobacteria are also interesting in regard to bacterial RNA biology as these early-branching species encode many small noncoding RNAs (sRNAs) but lack homologs of the common RNA-binding proteins (RBPs) CsrA, Hfq and ProQ. Here, to search for alternate sRNA-associated RBPs in F. nucleatum, we performed a systematic mass spectrometry analysis of proteins that copurified with 19 different sRNAs. Our approach recovered a 6S RNA-RNA polymerase complex in this species and discovered high enrichment of the KH domain proteins KhpA and KhpB with almost any tested sRNA, including the σE-dependent sRNA FoxI, a regulator of several envelope proteins. KhpA/B act as a dimer to bind sRNAs with low micromolar affinity and influence the cellular stability of several of their targets. RNA-seq analysis and cell biological assays suggest that KhpA/B have several physiological functions, including a strong requirement for ethanolamine utilization. Our RBP search and discovery of KhpA/B as major RBPs in F. nucleatum are important first steps in identifying key players of post-transcriptional control at the root of the bacterial phylogenetic tree.
Project description:Transposable elements (TEs) have significantly influenced the evolution of transcriptional regulatory networks in the human genome. Post-transcriptional regulation of human genes by TE-derived sequences has been observed in specific contexts, but has yet to be systematically and comprehensively investigated. Here, studied a collection of CLIP-Seq (CrossLinked ImmunoPrecipitation) experiments mapping the RNA binding sites for a diverse set of 46 human proteins across 68 experiments to explore the role of TEs in post-transcriptional regulation genome-wide via RNA-protein interactions. We detected widespread interactions between RNA binding proteins (RBPs) and various families of TE-derived sequence in the CLIP-Seq data. Alignment coverage clustered on specific positions of the TE consensus sequences, illuminating a diversity of TE-specific motifs for many RBPs. Evidence of binding and conservation of these motifs in the nonrepetitive transcriptome suggest that TEs have appropriated existing sequence preferences of the RBP. Upon depletion of the RBPs, transcripts possessing TE-derived binding sites were similarly regulated as those bound in nonrepetitive sequence. However, in a few cases the effect of RBP binding depended on the specific TE family bound—e.g., the ubiquitously expressed RBP HuR conferred opposite effects on stability to transcripts when bound to Alu elements versus other families. Our meta-analysis suggests a widespread role for TEs in shaping RNA-protein regulatory networks in the human genome.