Transcriptomics

Dataset Information

0

The global anaerobic metabolism regulator fnr is necessary for the degradation of food dyes and drugs by Escherichia coli


ABSTRACT: The microbiome is an underappreciated contributor to intestinal drug metabolism with broad implications for drug efficacy and toxicity. While considerable progress has been made towards identifying the gut bacterial genes and enzymes involved, the role of environmental factors in shaping their activity remains poorly understood. Here, we focus on the gut bacterial reduction of azo bonds (R-N=N-R’), found in diverse chemicals in both food and drugs. Surprisingly, the canonical azoR gene in Escherichia coli was dispensable for azo bond reduction. Instead, azo reductase activity was controlled by the fumarate and nitrate reduction (fnr) regulator, consistent with a requirement for the anoxic conditions found within the gastrointestinal tract. Paired transcriptomic and proteomic analysis of the fnr regulon revealed that in addition to altering the expression of multiple reductases, FNR is necessary for the metabolism of L-Cysteine to hydrogen sulfide, enabling the degradation of azo bonds. Furthermore, we found that FNR indirectly regulates this process though the small non-coding regulatory RNA fnrS. Taken together, these results show how gut bacteria sense and respond to their intestinal environment to enable the metabolism of chemical groups found in both dietary and pharmaceutical compounds.

ORGANISM(S): Escherichia coli

PROVIDER: GSE235465 | GEO | 2023/08/09

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2007-01-05 | GSE3657 | GEO
2010-07-01 | E-GEOD-3657 | biostudies-arrayexpress
2013-06-20 | GSE41186 | GEO
2013-06-20 | GSE41187 | GEO
2023-07-06 | MSV000092365 | MassIVE
2013-06-20 | E-GEOD-41187 | biostudies-arrayexpress
2005-11-21 | GSE3591 | GEO
2013-06-20 | GSE41189 | GEO
2021-05-22 | GSE174847 | GEO
| PRJNA986108 | ENA