Restoration of LAT signaling through the expression of a novel Adjunctive LAT-Activating CAR (ALA-CART) enhances the antigen-sensitivity and persistence of CAR T cells
Ontology highlight
ABSTRACT: Chimeric antigen receptor (CAR) T cell therapy have demonstrated remarkable success in treating B-cell malignancies that are refractory to standard therapies; however, preclinical and clinical studies have demonstrated that CAR T cell efficacy is greatly reduced against antigen-low tumors. This was exemplified in a clinical trial of CD22-directed CAR T cells where post-CAR relapses were driven by a decrease in the surface expression of the CD22 antigen. To address the poor response of CAR T cells to antigen-low tumor cells, we performed global phosphoproteomics using a SILAC/mass spectrometry approach to examine signal transduction events within CAR T cells in response to high- and low-levels of CD22 antigen. Stimulation with low levels of CD22 antigen resulted in decreased activation of several canonical T cell signaling pathways in CAR T cells, suggesting poor utilization of LAT. To overcome this inefficiency of LAT activation, we designed a bicistronic construct consisting of a clinically active 2nd generation CD22-BBz CAR along with a novel Adjunctive LAT Activating CAR incorporating the intracellular signaling domain of LAT (ALA-CART). ALA-CART cells demonstrated enhanced phosphorylation of LAT and restored downstream signaling in response to low levels of CD22. In xenograft models, ALA-CART cells completely eradicated CD22-low leukemia, significantly extending survival of mice in comparison to the clinically-active, standard CD22-BBz CAR T cells. Compared to the standard CD22-BBz CAR T cells, ALA-CART cells exhibited transcriptional differences in the resting state reflecting a less differentiated state, which corresponded to an enrichment of T stem cell memory cells and enhanced in vivo persistence. Thus, through the identification of CAR signaling deficits, we rationally designed the ALA-CART platform which improves the sensitivity and persistence of CAR T cells to target antigen-low cells, overcoming a mechanism of resistance to standard CAR therapies.
ORGANISM(S): Homo sapiens
PROVIDER: GSE236468 | GEO | 2025/02/04
REPOSITORIES: GEO
ACCESS DATA