Project description:BackgroundExtracellular vesicles (EVs), ubiquitously released by blood cells, facilitate intercellular communication. In cancer, tumor-derived EVs profoundly affect the microenvironment, promoting tumor progression and raising the risk of recurrence. These EVs contain miRNAs (EV-miRNAs), promising cancer biomarkers. Characterizing plasma EVs and identifying EV-miRNAs associated with breast cancer recurrence are crucial aspects of cancer research since they allow us to discover new biomarkers that are effective for understanding tumor biology and for being used for early detection, disease monitoring, or approaches to personalized medicine. This study aimed to characterize plasma EVs in breast cancer (BC) patients and identify EV-miRNAs associated with BC recurrence.MethodsThis retrospective observational study included 24 BC patients divided into recurrence (n= 11) and non-recurrence (n= 13) groups. Plasma EVs were isolated and characterized. Total RNA from EVs was analyzed for miRNA expression using NanoString's nCounter® miRNA Expression Assays panel. MicroRNA target prediction used mirDIP, and pathway interactions were assessed via Reactome.ResultsA stronger presence of circulating EVs was found to be linked with a less favorable prognosis (p = 0.0062). We discovered a distinct signature of EV-miRNAs, notably including miR-19a-3p and miR-130b-3p, which are significantly associated with breast cancer recurrence. Furthermore, miR-19a-3p and miR-130b-3p were implicated in the regulation of PTEN and MDM4, potentially contributing to breast cancer progression.A notable association emerged, indicating a high concentration of circulating EVs predicts poor prognosis (p = 0.0062). Our study found a distinct EV-miRNA signature involving miR-19a-3p and miR-130b-3p, strongly associated with disease recurrence. We also presented compelling evidence for their regulatory roles in PTEN and MDM4 genes, contributing to BC development.ConclusionThis study revealed that increased plasma EV concentration is associated with BC recurrence. The prognostic significance of EVs is closely tied to the unique expression profiles of miR-19a-3p and miR-130b-3p. These findings underscore the potential of EV-associated miRNAs as valuable indicators for BC recurrence, opening new avenues for diagnosis and treatment exploration.
Project description:Recurrence is the major cause of treatment failure in patients with ovarian cancer. The purpose of this study is to identify novel miRNAs contributing to ovarian cancer recurrence.
Project description:Introduction: Circulating microRNAs (miRNAs) exhibit remarkable stability and may serve as biomarkers in several clinical cancer settings. The aim of this study was to investigate changes in the levels of specific circulating miRNA following breast cancer surgery and evaluate whether these alterations were also observed in an independent data set. Methods: Global miRNA analysis was performed on prospectively collected serum samples from 24 post-menopausal women with estrogen receptor-positive early-stage breast cancer before surgery and 3 weeks after tumor resection using global LNA-based quantitative real-time PCR (qPCR). Results: Numbers of specific miRNAs detected in the samples ranged from 142 to 161, with 107 miRNAs detectable in all samples. After correction for multiple comparisons, 3 circulating miRNAs (miR-338-3p, miR-223 and miR-148a) exhibited significantly lower, and 1 miRNA (miR-107) higher levels in post-operative vs. pre-operative samples (p<0.05). No miRNAs were consistently undetectable in the post-operative samples compared to the pre-operative samples. Subsequently, our findings were compared to a dataset from a comparable patient population analyzed using similar study design and the same qPCR profiling platform, resulting in limited agreement. Conclusions: A panel of 4 circulating miRNAs exhibited significantly altered levels following radical resection of primary ER+ breast cancers in post-menopausal women. These specific miRNAs may be involved in tumorigenesis and could potentially be used to monitor whether all cancer cells have been removed at surgery and/or, subsequently, whether the patients develop recurrence. 48 serum samples were prospectively collected from 24 patients with early stage breast cancer before and after surgery at Odense University Hospital. Serum was prepared within one hour of sample collection after centrifugation (2000 x g; 10 min at 20 M-BM-:C) and immediately stored at -80 M-BM-:C.
Project description:Introduction: MicroRNAs (miRNAs) are small, non-coding RNA molecules involved in post-transcriptional gene regulation and have recently been shown to play a role in cancer metastasis. In solid tumors, especially breast cancer, alterations in miRNA expression contribute to cancer pathogenesis, including metastasis. Considering the emerging role of miRNAs in metastasis, the identification of predictive markers is necessary to further understanding of stage-specific breast cancer development. This is a retrospective analysis that aimed to identify molecular biomarkers related to distant breast cancer metastasis development.<br><br>Methods: A retrospective case cohort study was performed in 64 breast cancer patients treated during the period from 1998-2001. The case group (n=29) consisted of patients with a poor prognosis who presented with breast cancer recurrence or metastasis during follow up. The control group (n=35) consisted of a random sample of patients with a good prognosis who did not develop breast cancer recurrence or metastasis. These patient groups were stratified according to TNM clinical stage (CS) I, II and III, and the main clinical features of the patients were homogeneous. miRNA profiling was performed using formalin-fixed, paraffin-embedded tumors. Biomarkers related to metastatic potential were identified independent of clinical stage, and a cutoff point was selected based on the optimal sensitivity and specificity (ROC curve). Finally, a hazard risk analysis of these biomarkers was performed to evaluate their relation to metastatic potential. <br><br>Results: miRNA expression profiling identified several miRNAs that were either specific and shared across all clinical stages (p?0.05). Among these, we identified miRNAs previously associated with cell motility (let-7 family), cell proliferation and invasion (hsa-miR-16 and has-miR-205) and distant metastasis (hsa-miR-21). In addition, hsa-miR-494 and hsa-miR-21 were up-regulated in metastatic cases of CSI and II. Furthermore, the combination of the 3 miRNAs identified for CSII (hsa-miR-494, hsa-miR-183 and hsa-miR-21) was significant and were a more effective risk marker compared to the single miRNAs. <br><br>Conclusions: Women with metastatic breast cancer, especially CSII, presented up-regulated levels of miR-183, miR-494 and miR-21, which were associated with a poor prognosis. These miRNAs therefore represent new risk biomarkers of breast cancer metastasis and may be useful for future targeted therapies.
Project description:Introduction: Circulating microRNAs (miRNAs) exhibit remarkable stability and may serve as biomarkers in several clinical cancer settings. The aim of this study was to investigate changes in the levels of specific circulating miRNA following breast cancer surgery and evaluate whether these alterations were also observed in an independent data set. Methods: Global miRNA analysis was performed on prospectively collected serum samples from 24 post-menopausal women with estrogen receptor-positive early-stage breast cancer before surgery and 3 weeks after tumor resection using global LNA-based quantitative real-time PCR (qPCR). Results: Numbers of specific miRNAs detected in the samples ranged from 142 to 161, with 107 miRNAs detectable in all samples. After correction for multiple comparisons, 3 circulating miRNAs (miR-338-3p, miR-223 and miR-148a) exhibited significantly lower, and 1 miRNA (miR-107) higher levels in post-operative vs. pre-operative samples (p<0.05). No miRNAs were consistently undetectable in the post-operative samples compared to the pre-operative samples. Subsequently, our findings were compared to a dataset from a comparable patient population analyzed using similar study design and the same qPCR profiling platform, resulting in limited agreement. Conclusions: A panel of 4 circulating miRNAs exhibited significantly altered levels following radical resection of primary ER+ breast cancers in post-menopausal women. These specific miRNAs may be involved in tumorigenesis and could potentially be used to monitor whether all cancer cells have been removed at surgery and/or, subsequently, whether the patients develop recurrence.
Project description:Analysis of the levels of circulating miRNAs from women with early stage breast cancer and matched healthy controls. miRNAs in plasma samples from 20 women with early stage breast cancer (10 Caucasian American and 10 African American) compared with 20 matched healthy controls (10 Caucasian American and 10 African American).