Transcriptomics

Dataset Information

0

Neuronal mTORC1 inhibition promotes longevity without suppressing anabolic growth and reproduction in C. elegans


ABSTRACT: mTORC1 (mechanistic target of rapamycin complex 1) is a metabolic sensor that promotes growth when nutrients are abundant. Ubiquitous inhibition of mTORC1 extends lifespan in multiple organisms but also disrupts several anabolic processes resulting in stunted growth, slowed development, reduced fertility, and disrupted metabolism. However, it is unclear if these pleotropic effects of mTORC1 inhibition can be uncoupled from longevity. Here, we utilize the auxin-inducible degradation (AID) system to restrict mTORC1 inhibition to C. elegans neurons. We find that neuron-specific degradation of RAGA-1, an upstream activator of mTORC1, or LET-363, the ortholog of mammalian mTOR, is sufficient to extend lifespan in C. elegans. Unlike raga-1 loss of function genetic mutations or somatic AID of RAGA-1, neuronal AID of RAGA-1 robustly extends lifespan without impairing body size, developmental rate, brood size or neuronal function. Moreover, while somatic degradation of RAGA-1 alters the expression of thousands of genes, demonstrating the widespread effects of mTORC1 inhibition, neuronal degradation of RAGA-1 only results in around 200 differentially expressed genes with a specific enrichment in metabolism and stress response. Notably, our work demonstrates that targeting mTORC1 specifically in the nervous system in C. elegans uncouples longevity from growth and reproductive impairments, and that many canonical effects of low mTORC1 activity are not required to promote healthy aging. These data challenge previously held ideas about the mechanisms of mTORC1 lifespan extension and underscore the potential of promoting longevity by neuron-specific mTORC1 modulation.

ORGANISM(S): Caenorhabditis elegans

PROVIDER: GSE237060 | GEO | 2023/07/18

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2021-05-11 | MTBLS2397 | MetaboLights
2017-10-25 | GSE106105 | GEO
2019-12-17 | GSE129928 | GEO
2021-07-06 | GSE149944 | GEO
| PRJNA993650 | ENA
2013-03-15 | E-GEOD-27677 | biostudies-arrayexpress
2009-01-13 | E-GEOD-9682 | biostudies-arrayexpress
2020-07-01 | GSE138129 | GEO
2008-12-15 | GSE9682 | GEO
2013-04-23 | E-GEOD-46257 | biostudies-arrayexpress