Novel human pluripotent stem cell-derived hypothalamus organoids demonstrate cellular diversity
Ontology highlight
ABSTRACT: The hypothalamus is a region of the brain that plays an important role in regulating body functions and behaviors. There is a growing interest in human pluripotent stem cells (hPSCs) for modeling diseases that affect the hypothalamus. Here, we established an hPSC-derived hypothalamus organoid differentiation protocol to model the cellular diversity of this brain region. Using an hPSC line with a tyrosine hydroxylase (TH)-TdTomato reporter for dopaminergic neurons (DNs) and other TH-expressing cells, we interrogated DN-specific pathways and functions in electrophysiologically active hypothalamus organoids. Single-cell RNA sequencing (scRNA-seq) revealed diverse neuronal and non-neuronal cell types in mature hypothalamus organoids. We identified several molecularly distinct hypothalamic DN subtypes which demonstrated different developmental maturities. Our in vitro 3D hypothalamus differentiation protocol can be used to study the development of this critical brain structure and can be applied to disease modeling to generate novel therapeutic approaches for disorders centered around the hypothalamus.
Project description:<p>Human brain organoids are emerging models to study human brain development and pathology as they recapitulate the development and characteristics of major neural cell types, and enable manipulation through an <em>in vitro</em> system. Over the past decade, with the advent of spatial technologies, mass spectrometry imaging (MSI) has become a prominent tool for metabolic microscopy, providing label-free, non-targeted molecular and spatial distribution information of the metabolites within tissue, including lipids. This technology has never been used for studies of brain organoids and here, we set out to develop a standardized protocol for preparation and mass spectrometry imaging of human brain organoids. We present an optimized and validated sample preparation protocol, including sample fixation, optimal embedding solution, homogenous deposition of matrices, data acquisition and processing to maximize the molecular information derived from mass spectrometry imaging. We focus on lipids in organoids, as they play critical roles during cellular and brain development. Using high spatial and mass resolution in positive- and negative-ion modes, we detected 260 lipids in the organoids. Seven of them were uniquely localized within the neurogenic niches or rosettes as confirmed by histology, suggesting their importance for neuroprogenitor proliferation. We observed a particularly striking distribution of ceramide-phosphoethanolamine CerPE 36:1; O2 restricted within rosettes and of phosphatidyl-ethanolamine PE 38:3, which was distributed throughout the organoid tissue but not in rosettes. This suggests that ceramide in this particular lipid species might be important for neuroprogenitor biology, while its removal may be important for terminal differentiation of their progeny. Overall, our study establishes the first optimized experimental pipeline and data processing strategy for mass spectrometry imaging of human brain organoids, allowing direct comparison of lipid signal intensities and distributions in these tissues. Further, our data shed new light on the complex processes that govern brain development by identifying specific lipid signatures that may play a role in metabolic cell fate trajectories. mass spectrometry imaging thus has great potential in advancing our understanding of early brain development as well as disease modeling and drug discovery.</p>
Project description:Introduction of Hermansky-Pudlak Syndrome-associated mutations with CRISPR/Cas9 genome editing, allows for disease modeling in 3D cultures of hPSC-derived lung organoids.
Project description:Telencephalic organoids generated from human pluripotent stem cells (hPSC) are emerging as an effective system to study the distinct features of the developing human brain and the underlying causes of many neurological disorders. While progress in organoid technology has been steadily advancing, many challenges remain including rampant batch-to-batch and cell line-to-cell line variability and irreproducibility. Here, we demonstrate that a major contributor to successful cortical organoid production is the manner in which hPSC are maintained prior to differentiation. Optimal results were achieved using fibroblast-feeder-supported hPSC compared to feeder-independent cells, related to differences in their transcriptomic states. Feeder-supported hPSC display elevated activation of diverse TGFβ superfamily signaling pathways and increased expression of genes associated with naïve pluripotency. We further identify combinations of TGFβ-related growth factors that are necessary and together sufficient to impart broad telencephalic organoid competency to feeder-free hPSC and enable reproducible formation of brain structures suitable for disease modeling.
Project description:The hypothalamus is the brain region that regulates systemic body metabolism and multiple functions in other brain regions. In adult mice, the hypothalamus harbors neural stem/precursor cell (NSC)-like cells. Along with the dysregulation of body metabolism and physiology that occurs during aging, the NSC population in the hypothalamus declines with age. Here, we introduce a novel protocol that yields scalable and storable hypothalamus-specific NSCs (htNSCs) from hypothalamus-like organoids derived from human pluripotent stem cells (hPSCs). Implanting htNSCs into the medio-basal hypothalami of aged mice conspicuously ameliorated age-related declines in metabolic fitness, physical capacity, and cognitive function and produced corresponding histologic changes in various body tissues. Single transcriptome and immunohistochemical analyses of the grafted hypothalamic tissues showed that the anti-aging effects were attained by correcting glial NF-κB, TNFα, and NLRP3 inflammasome pathways. Collectively, our findings support the potential of anti- or healthy aging therapies that target htNSCs and hypothalamic inflammation.
Project description:The hypothalamus is the brain region that regulates systemic body metabolism and multiple functions in other brain regions. In adult mice, the hypothalamus harbors neural stem/precursor cell (NSC)-like cells. Along with the dysregulation of body metabolism and physiology that occurs during aging, the NSC population in the hypothalamus declines with age. Here, we introduce a novel protocol that yields scalable and storable hypothalamus-specific NSCs (htNSCs) from hypothalamus-like organoids derived from human pluripotent stem cells (hPSCs). Implanting htNSCs into the medio-basal hypothalami of aged mice conspicuously ameliorated age-related declines in metabolic fitness, physical capacity, and cognitive function and produced corresponding histologic changes in various body tissues. Single transcriptome and immunohistochemical analyses of the grafted hypothalamic tissues showed that the anti-aging effects were attained by correcting glial NF-κB, TNFα, and NLRP3 inflammasome pathways. Collectively, our findings support the potential of anti- or healthy aging therapies that target htNSCs and hypothalamic inflammation.
Project description:The hypothalamus is the brain region that regulates systemic body metabolism and multiple functions in other brain regions. In adult mice, the hypothalamus harbors neural stem/precursor cell (NSC)-like cells. Along with the dysregulation of body metabolism and physiology that occurs during aging, the NSC population in the hypothalamus declines with age. Here, we introduce a novel protocol that yields scalable and storable hypothalamus-specific NSCs (htNSCs) from hypothalamus-like organoids derived from human pluripotent stem cells (hPSCs). Implanting htNSCs into the medio-basal hypothalami of aged mice conspicuously ameliorated age-related declines in metabolic fitness, physical capacity, and cognitive function and produced corresponding histologic changes in various body tissues. Single transcriptome and immunohistochemical analyses of the grafted hypothalamic tissues showed that the anti-aging effects were attained by correcting glial NF-κB, TNFα, and NLRP3 inflammasome pathways. Collectively, our findings support the potential of anti- or healthy aging therapies that target htNSCs and hypothalamic inflammation.
Project description:Organoids were generated from H9 cells. Single cells were sorted from 4-month-old brain organoids differentiated using the telencephalon organoids protocol.
Project description:Underdeveloped lungs are the primary cause of death in premature infants, however, little is known about stem and progenitor cell maintenance during human lung development. In this study, we have identified that FGF7, Retinoic Acid and CHIR-99021, a small molecule that inhibits GSK3 to activate Wnt signaling, support in vitro maintenance of primary human fetal lung bud tip progenitor cells in a progenitor state. Furthermore, these factors are sufficient to derive a population of human bud tip-like progenitor cells in 3D organoid structures from human pluripotent stem cells (hPSC). Functional studies showed that hPSC-derived bud tip progenitor organoids do not contain any mesenchymal cell types, maintain multilineage potential in vitro and are able to engraft into the airways of injured mice and respond to systemic factors. We performed RNA-sequencing to assess the degree of similarity in global gene expression profiles between the full human fetal lung (59-127 days gestation), isolated human fetal bud tip progenitors, organoids grown from primary fetal bud tip progenitors, and hPSC-derived bud tip organoids. Results showed that hPSC-derived organoids have molecular profiles similar to organoids generated from primary human fetal lung tissue. Gene expression differences between hPSC-derived bud tip organoids and fetal progenitor organoids may be related to the presence of contaminating mesenchymal cells in primary cultures. hPSC-derived bud tip organoids are generated from a well-defined human cell sources, offering a distinct advantage over rare primary tissue as a means to study human specific lung development, homeostasis and disease.<br>Sample Nomenclature - Description<br> -------------------------------------------------------------------------<br> Peripheral fetal lung the distal/peripheral portion of the fetal lung (i.e., distal 0.5 cm) was excised from the rest of the lung using a scalpel. This includes all components of the lung (e.g., epithelial, mesenchymal, vascular). <br>Isolated fetal bud tip the bud peripheral portion of the fetal lung was excised with a scalpel and subjected to enzymatic digestion and microdissection. The epithelium was dissected and separated from the mesenchyme, but a small amount of associated mesenchyme likely remained. <br>Fetal progenitor organoid 3D organoid structures that arose from culturing isolated fetal epithelial bud tips. <br>Foregut spheroid 3D foregut endoderm structure as described in Dye et al. (2015). Gives rise to patterned lung organoid (PLO) when grown in 3F medium. <br> Patterned lung organoid (PLO) lung organoids that were generated by differentiating hPSCs, as described throughout the manuscript. <br> Bud tip organoid organoids derived from PLOs, enriched for SOX2/SOX9 co-expressing cells, and grown/passaged in 3F medium.