Epigenetic therapy targets the 3D epigenome in endocrine-resistant breast cancer [WGBS]
Ontology highlight
ABSTRACT: Here we investigate the impact of epigenetic therapy with Decitabine in endocrine-resistant ER+ breast cancer by using patient-derived xenograft (PDX) models. Decitabine treatment restrained tumour growth, inhibited cell proliferation and resulted in significant loss of DNA methylation, particularly at enhancers and repetitive elements. Systematic integration of matched in situ Hi-C / PCHi-C, EPIC, RNA-seq and ChIP–seq datasets revealed widespread differences in epigenome regulation and enhancer-promoter communication with Decitabine. We find that loss of DNA methylation with Decitabine strongly affects the open (A) and closed (B) compartment structure and TAD boundary insulation. Our study identified and focused on key DNA methylation-dependent, enhancer ER binding sites that are activated in Decitabine-treated PDX tumours, enabling direct interactions between promoters and multiple distal enhancers, inducing expression of ER target genes and pathways. Overall, we demonstrate that epigenetic therapy inhibits tumour progression through to rewiring of ER-mediated 3D chromatin interactions and transcriptome programs. Our findings suggest that targeting the 3D epigenome with epigenetic therapies represents a promising strategy for anti-cancer treatment in ER+ endocrine resistant breast cancer patients.
Project description:Here we investigate the impact of epigenetic therapy with Decitabine in endocrine-resistant ER+ breast cancer by using patient-derived xenograft (PDX) models. Decitabine treatment restrained tumour growth, inhibited cell proliferation and resulted in significant loss of DNA methylation, particularly at enhancers and repetitive elements. Systematic integration of matched in situ Hi-C / PCHi-C, EPIC, RNA-seq and ChIP–seq datasets revealed widespread differences in epigenome regulation and enhancer-promoter communication with Decitabine. We find that loss of DNA methylation with Decitabine strongly affects the open (A) and closed (B) compartment structure and TAD boundary insulation. Our study identified and focused on key DNA methylation-dependent, enhancer ER binding sites that are activated in Decitabine-treated PDX tumours, enabling direct interactions between promoters and multiple distal enhancers, inducing expression of ER target genes and pathways. Overall, we demonstrate that epigenetic therapy inhibits tumour progression through to rewiring of ER-mediated 3D chromatin interactions and transcriptome programs. Our findings suggest that targeting the 3D epigenome with epigenetic therapies represents a promising strategy for anti-cancer treatment in ER+ endocrine resistant breast cancer patients.
Project description:Here we investigate the impact of epigenetic therapy with Decitabine in endocrine-resistant ER+ breast cancer by using patient-derived xenograft (PDX) models. Decitabine treatment restrained tumour growth, inhibited cell proliferation and resulted in significant loss of DNA methylation, particularly at enhancers and repetitive elements. Systematic integration of matched in situ Hi-C / PCHi-C, EPIC, RNA-seq and ChIP–seq datasets revealed widespread differences in epigenome regulation and enhancer-promoter communication with Decitabine. We find that loss of DNA methylation with Decitabine strongly affects the open (A) and closed (B) compartment structure and TAD boundary insulation. Our study identified and focused on key DNA methylation-dependent, enhancer ER binding sites that are activated in Decitabine-treated PDX tumours, enabling direct interactions between promoters and multiple distal enhancers, inducing expression of ER target genes and pathways. Overall, we demonstrate that epigenetic therapy inhibits tumour progression through to rewiring of ER-mediated 3D chromatin interactions and transcriptome programs. Our findings suggest that targeting the 3D epigenome with epigenetic therapies represents a promising strategy for anti-cancer treatment in ER+ endocrine resistant breast cancer patients.
Project description:Here we investigate the impact of epigenetic therapy with Decitabine in endocrine-resistant ER+ breast cancer by using patient-derived xenograft (PDX) models. Decitabine treatment restrained tumour growth, inhibited cell proliferation and resulted in significant loss of DNA methylation, particularly at enhancers and repetitive elements. Systematic integration of matched in situ Hi-C / PCHi-C, EPIC, RNA-seq and ChIP–seq datasets revealed widespread differences in epigenome regulation and enhancer-promoter communication with Decitabine. We find that loss of DNA methylation with Decitabine strongly affects the open (A) and closed (B) compartment structure and TAD boundary insulation. Our study identified and focused on key DNA methylation-dependent, enhancer ER binding sites that are activated in Decitabine-treated PDX tumours, enabling direct interactions between promoters and multiple distal enhancers, inducing expression of ER target genes and pathways. Overall, we demonstrate that epigenetic therapy inhibits tumour progression through to rewiring of ER-mediated 3D chromatin interactions and transcriptome programs. Our findings suggest that targeting the 3D epigenome with epigenetic therapies represents a promising strategy for anti-cancer treatment in ER+ endocrine resistant breast cancer patients.
Project description:Here we investigate the impact of epigenetic therapy with Decitabine in endocrine-resistant ER+ breast cancer by using patient-derived xenograft (PDX) models. Decitabine treatment restrained tumour growth, inhibited cell proliferation and resulted in significant loss of DNA methylation, particularly at enhancers and repetitive elements. Systematic integration of matched in situ Hi-C / PCHi-C, EPIC, RNA-seq and ChIP–seq datasets revealed widespread differences in epigenome regulation and enhancer-promoter communication with Decitabine. We find that loss of DNA methylation with Decitabine strongly affects the open (A) and closed (B) compartment structure and TAD boundary insulation. Our study identified and focused on key DNA methylation-dependent, enhancer ER binding sites that are activated in Decitabine-treated PDX tumours, enabling direct interactions between promoters and multiple distal enhancers, inducing expression of ER target genes and pathways. Overall, we demonstrate that epigenetic therapy inhibits tumour progression through to rewiring of ER-mediated 3D chromatin interactions and transcriptome programs. Our findings suggest that targeting the 3D epigenome with epigenetic therapies represents a promising strategy for anti-cancer treatment in ER+ endocrine resistant breast cancer patients.
Project description:Here we investigate the impact of epigenetic therapy with Decitabine in endocrine-resistant ER+ breast cancer by using patient-derived xenograft (PDX) models. Decitabine treatment restrained tumour growth, inhibited cell proliferation and resulted in significant loss of DNA methylation, particularly at enhancers and repetitive elements. Systematic integration of matched in situ Hi-C / PCHi-C, EPIC, RNA-seq and ChIP–seq datasets revealed widespread differences in epigenome regulation and enhancer-promoter communication with Decitabine. We find that loss of DNA methylation with Decitabine strongly affects the open (A) and closed (B) compartment structure and TAD boundary insulation. Our study identified and focused on key DNA methylation-dependent, enhancer ER binding sites that are activated in Decitabine-treated PDX tumours, enabling direct interactions between promoters and multiple distal enhancers, inducing expression of ER target genes and pathways. Overall, we demonstrate that epigenetic therapy inhibits tumour progression through to rewiring of ER-mediated 3D chromatin interactions and transcriptome programs. Our findings suggest that targeting the 3D epigenome with epigenetic therapies represents a promising strategy for anti-cancer treatment in ER+ endocrine resistant breast cancer patients.
Project description:Here we investigate the impact of epigenetic therapy with Decitabine in endocrine-resistant ER+ breast cancer by using patient-derived xenograft (PDX) models. Decitabine treatment restrained tumour growth, inhibited cell proliferation and resulted in significant loss of DNA methylation, particularly at enhancers and repetitive elements. Systematic integration of matched in situ Hi-C / PCHi-C, EPIC, RNA-seq and ChIP–seq datasets revealed widespread differences in epigenome regulation and enhancer-promoter communication with Decitabine. We find that loss of DNA methylation with Decitabine strongly affects the open (A) and closed (B) compartment structure and TAD boundary insulation. Our study identified and focused on key DNA methylation-dependent, enhancer ER binding sites that are activated in Decitabine-treated PDX tumours, enabling direct interactions between promoters and multiple distal enhancers, inducing expression of ER target genes and pathways. Overall, we demonstrate that epigenetic therapy inhibits tumour progression through to rewiring of ER-mediated 3D chromatin interactions and transcriptome programs. Our findings suggest that targeting the 3D epigenome with epigenetic therapies represents a promising strategy for anti-cancer treatment in ER+ endocrine resistant breast cancer patients.
Project description:Here we investigate the impact of epigenetic therapy with Decitabine in endocrine-resistant ER+ breast cancer by using patient-derived xenograft (PDX) models. Decitabine treatment restrained tumour growth, inhibited cell proliferation and resulted in significant loss of DNA methylation, particularly at enhancers and repetitive elements. Systematic integration of matched in situ Hi-C / PCHi-C, EPIC, RNA-seq and ChIP–seq datasets revealed widespread differences in epigenome regulation and enhancer-promoter communication with Decitabine. We find that loss of DNA methylation with Decitabine strongly affects the open (A) and closed (B) compartment structure and TAD boundary insulation. Our study identified and focused on key DNA methylation-dependent, enhancer ER binding sites that are activated in Decitabine-treated PDX tumours, enabling direct interactions between promoters and multiple distal enhancers, inducing expression of ER target genes and pathways. Overall, we demonstrate that epigenetic therapy inhibits tumour progression through to rewiring of ER-mediated 3D chromatin interactions and transcriptome programs. Our findings suggest that targeting the 3D epigenome with epigenetic therapies represents a promising strategy for anti-cancer treatment in ER+ endocrine resistant breast cancer patients.
Project description:DNA methylation is one of the most important epigenetic marks and changes in DNA methylation patterns have been associated with many different types of cancer. Recently, three-dimensional (3D) genome organisation has been demonstrated to play a fundamental role in gene regulation. Determining the interplay between DNA methylation and 3D chromatin structure and function is challenging due to the extreme complexity of epigenetic regulation. To study the impact of DNA methylation on 3D genome organization, we performed a time-course of Decitabine treatment in tamoxifen-resistant MCF7 (TAMR) cells. Decitabine was applied daily for 7 days, followed by “recovery” up to 28 days and DNA methylation (EPIC), gene expression (RNA-seq) and promoter-enhancer interactions (PCHi-C) were assessed on day 7 post-Decitabine- and Vehicle-treatment and day 28 “Recovery” and Vehicle treatment in duplicate. Our data revealed a functional link between DNA hypomethylation at distal enhancer regions, enhancer-promoter interactions, and gene regulation.
Project description:DNA methylation is one of the most important epigenetic marks and changes in DNA methylation patterns have been associated with many different types of cancer. Recently, three-dimensional (3D) genome organisation has been demonstrated to play a fundamental role in gene regulation. Determining the interplay between DNA methylation and 3D chromatin structure and function is challenging due to the extreme complexity of epigenetic regulation. To study the impact of DNA methylation on 3D genome organization, we performed a time-course of Decitabine treatment in tamoxifen-resistant MCF7 (TAMR) cells. Decitabine was applied daily for 7 days, followed by “recovery” up to 28 days and DNA methylation (EPIC), gene expression (RNA-seq) and promoter-enhancer interactions (PCHi-C) were assessed on day 7 post-Decitabine- and Vehicle-treatment and day 28 “Recovery” and Vehicle treatment in duplicate. Our data revealed a functional link between DNA hypomethylation at distal enhancer regions, enhancer-promoter interactions, and gene regulation.
Project description:DNA methylation is one of the most important epigenetic marks and changes in DNA methylation patterns have been associated with many different types of cancer. Recently, three-dimensional (3D) genome organisation has been demonstrated to play a fundamental role in gene regulation. Determining the interplay between DNA methylation and 3D chromatin structure and function is challenging due to the extreme complexity of epigenetic regulation. To study the impact of DNA methylation on 3D genome organization, we performed a time-course of Decitabine treatment in tamoxifen-resistant MCF7 (TAMR) cells. Decitabine was applied daily for 7 days, followed by “recovery” up to 28 days and DNA methylation (EPIC), gene expression (RNA-seq) and promoter-enhancer interactions (PCHi-C) were assessed on day 7 post-Decitabine- and Vehicle-treatment and day 28 “Recovery” and Vehicle treatment in duplicate. Our data revealed a functional link between DNA hypomethylation at distal enhancer regions, enhancer-promoter interactions, and gene regulation.