Project description:Transcription regulates key functions of living organisms in normal and disease states, including cell growth and development, embryonic and adult tissue organization, and tumor progression. Here we identify a novel mechanism of transcriptional regulation by an actin regulatory and signaling protein, Abelson Interactor 1(ABI1). Using prostate cancer models, we uncover a reciprocal regulation between ABI1 and the Androgen Receptor (AR). ABI1 is a direct, androgen-regulated target; in turn, ABI1 interacts with AR and its splice variant ARv7, and co-regulates a subset of specific transcriptional targets. ABI1 directs transcription through transient yet well-defined interaction of its intrinsically disordered region with DNA. Clinical evaluation shows that both the ABI1-DNA binding (through Exon 4 splicing) and ABI1-AR interaction are regulated during androgen deprivation therapy and prostate cancer progression, thus controlling tumor plasticity through connecting actin cytoskeleton and cellular signaling to transcriptional regulation. We propose that ABI1 is an epigenetic regulator of transcriptional homeostasis in AR-driven cancers.
Project description:Transcription regulates key functions of living organisms in normal and disease states, including cell growth and development, embryonic and adult tissue organization, and tumor progression. Here we identify a novel mechanism of transcriptional regulation by an actin regulatory and signaling protein, Abelson Interactor 1(ABI1). Using prostate cancer models, we uncover a reciprocal regulation between ABI1 and the Androgen Receptor (AR). ABI1 is a direct, androgen-regulated target; in turn, ABI1 interacts with AR and its splice variant ARv7, and co-regulates a subset of specific transcriptional targets. ABI1 directs transcription through transient yet well-defined interaction of its intrinsically disordered region with DNA. Clinical evaluation shows that both the ABI1-DNA binding (through Exon 4 splicing) and ABI1-AR interaction are regulated during androgen deprivation therapy and prostate cancer progression, thus controlling tumor plasticity through connecting actin cytoskeleton and cellular signaling to transcriptional regulation. We propose that ABI1 is an epigenetic regulator of transcriptional homeostasis in AR-driven cancers.
Project description:Castration-resistant prostate cancer (CRPC) is an androgen receptor (AR)-dependent disease expected to cause the death of more than 27,000 Americans in 2015. There are only a few available treatments for CRPC, making the discovery of new drugs an urgent need. We report that CUDC-101 (an inhibitor od HER2/NEU, EGFR and HDAC) inhibits both the full length AR (flAR) and the AR variant AR-V7. This observation prompted experiments to discover which of the known activities of CUDC-101 is responsible for the inhibition of flAR/AR-V7 signaling. We used pharmacologic and genetic approaches, and found that the effect of CUDC-101 on flAR and AR-V7 was duplicated only by other HDAC inhibitors, or by silencing the HDAC isoforms HDAC5 and HDAC10. We observed that CUDC-101 treatment or AR-V7 silencing by RNAi equally reduced transcription of the AR-V7 target gene, PSA, without affecting viability of 22Rv1 cells. However, when cellular proliferation was used as an end point, CUDC-101 was more effective than AR-V7 silencing, raising the prospect that CUDC-101 has additional targets beside AR-V7. In support of this, we found that CUDC-101 increased the expression of the cyclin-dependent kinase inhibitor p21, and decreased that of the oncogene HER2/NEU. To determine if CUDC-101 reduces growth in a xenograft model of prostate cancer, this drug was given for 14 days to castrated male SCID mice inoculated with 22Rv1 cells. Compared to vehicle, CUDC-101 reduced xenograft growth in a statistically significant way, and without macroscopic side effects. These studies demonstrate that CUDC-101 inhibits wtAR and AR-V7 activity and growth of 22Rv1 cells in vitro and in vivo. These effects result from the ability of CUDC-101 to target not only HDAC signaling, which was associated with decreased flAR and AR-V7 activity, but multiple additional oncogenic pathways. These observations raise the possibility that treatment of CRPC may be achieved by using similarly multi-targeted approaches.
Project description:Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Project description:Castration-resistant (CR) prostate cancer (PCa) partly arises due to persistence of androgen receptor (AR) transcriptional activity in the absence of cognate ligand. An emerging mechanism underlying the CRPCa phenotype and predicting response to therapy is the expression of the constitutively-active AR-V7 splice variant generated by AR cryptic exon 3b inclusion. Here, we explore the role of the RNA-binding protein (RBP) Sam68 (encoded by KHDRBS1), which is over-expressed in clinical PCa, on AR-V7 expression and transcription function. Using a minigene reporter, we show that Sam68 controls expression of exon 3b resulting in an increase in endogenous AR-V7 mRNA and protein expression in RNA-binding-dependent manner. We identify a novel protein-protein interaction between Sam68 and AR-V7 mediated by a common domain shared with full-length AR, and observe these proteins in the cell nucleoplasm. Using a luciferase reporter, we demonstrate that Sam68 co-activates ligand-independent AR-V7 transcriptional activity in an RNA-binding-independent manner, and controls expression of the endogenous AR-V7-specific gene target UBE2C. Our data suggest that Sam68 has separable effects on the regulation of AR-V7 expression and transcriptional activity, through its RNA-binding capacity. Sam68 and other RBPs may control expression of AR-V7 and other splice variants as well as their downstream functions in CRPCa.
Project description:Early studies suggested that the androgen receptor (AR) might play important roles to promote the renal cell carcinoma (RCC) progression; however, the detailed mechanisms remain unclear. Here we demonstrated the higher YBX1 expression with lower C1QBP expression in human RCC clinical tissues, and the intensity of C1QBP was negatively correlated with the YBX1 nuclear expression. Mechanism dissection found C1QBP could interact with YBX1 to suppress the YBX1 activation via altering the YBX1 phosphorylation and nuclear translocation in RCC cells. The consequences of such suppression of YBX1 might then result in suppressing the RCC cell migration and invasion that involved altering the AR-modulated MMP9 signals. Interruption of this newly identified C1QBP→YBX1→AR→MMP9-suppressed RCC cell invasion pathway via targeting YBX1 or AR partially reversed the RCC cell invasion. Importantly, results from in vivo mouse model with orthotopic implantation of RCC OSRC2 cells into the left renal capsule also confirmed in vitro cell line studies showing targeting YBX1 could suppress RCC cell invasion via regulation of AR/MMP9 signals. Collectively, these data suggest that C1QBP could regulate YBX1 to suppress the AR-enhanced RCC cell invasion. Targeting this newly identified C1QBP/YBX1/AR/MMP9 signal pathway may provide a new potential therapy to better suppress RCC metastasis.
Project description:Androgens control male sexual development and maintenance of the adult male phenotype. They have very divergent effects on their target organs like the reproductive organs, muscle, bone, brain and skin. This is explained in part by the fact that different cell types respond differently to androgen stimulus, even when all these responses are mediated by the same intracellular androgen receptor. To understand these tissue- and cell-specific readouts of androgens, we have to learn the many different steps in the transcription activation mechanisms of the androgen receptor (NR3C4). Like all nuclear receptors, the steroid receptors have a central DNA-binding domain connected to a ligand-binding domain by a hinge region. In addition, all steroid receptors have a relatively large amino-terminal domain. Despite the overall structural homology with other nuclear receptors, the androgen receptor has several specific characteristics which will be discussed here. This receptor can bind two types of androgen response elements (AREs): one type being similar to the classical GRE/PRE-type elements, the other type being the more divergent and more selective AREs. The hormone-binding domain has low intrinsic transactivation properties, a feature that correlates with the low affinity of this domain for the canonical LxxLL-bearing coactivators. For the androgen receptor, transcriptional activation involves the alternative recruitment of coactivators to different regions in the amino-terminal domain, as well as the hinge region. Finally, a very strong ligand-induced interaction between the amino-terminal domain and the ligand-binding domain of the androgen receptor seems to be involved in many aspects of its function as a transcription factor. This review describes the current knowledge on the structure-function relationships within the domains of the androgen receptor and tries to integrate the involvement of different domains, subdomains and motifs in the functioning of this receptor as a transcription factor with tissue- and cell-specific readouts.