Analysis of active and inactive X chromosome architecture reveals the independent organization of 30-nm and large scale chromatin structures
Ontology highlight
ABSTRACT: Using a genetic model, we present a high resolution chromatin fibre analysis of transcriptionally active (Xa) and inactive (Xi) X chromosomes packaged into euchromatin and facultative heterochromatin. Our results show that gene promoters have an open chromatin structure that is enhanced upon transcriptional activation but the Xa and the Xi have similar overall 30-nm chromatin fibre structures. Therefore, the formation of facultative heterochromatin is dependent on factors that act at a level above the 30-nm fibre and transcription does not alter bulk chromatin fibre structures. However, large scale chromatin structures on Xa are decondensed compared to the Xi and transcription inhibition is sufficient to promote large scale chromatin compaction. We show a link between transcription and large scale chromatin packaging independent of the bulk 30-nm chromatin fibre and propose that transcription, not the global compaction of 30-nm chromatin fibres, determines the cytological appearance of large scale chromatin structures. This SuperSeries is composed of the SubSeries listed below.
Project description:X Chromosome Inactivation (XCI) equalizes X-linked gene expression between sexes. B cells exhibit dynamic XCI, with Xist RNA/heterochromatic marks absent on the inactive X (Xi) in naive B cells but returning following mitogenic stimulation. The impact of dynamic XCI on Xi structure and maintenance was previously unknown. Here, we find dosage compensation of the Xi with state-specific XCI escape genes in naive and in vitro activated B cells. Allele-specific OligoPaints indicate similar Xi and Xa territories in B cells that are less compact than in fibroblasts. Allele-specific Hi-C reveals a lack of TAD-like structures on the Xi of naive B cells, and stimulation-induced alterations in TAD-like boundary strength independent of gene expression. Notably, Xist deletion in B cells changes TAD boundaries and large-scale Xi compaction. Altogether, our results uncover B cell-specific Xi plasticity which could underlie sex-biased biological mechanisms.
2024-12-31 | GSE283966 | GEO
Project description:Analysis of active and inactive X chromosome architecture reveals the independent organization of 30-nm and large scale chromatin structures
Project description:Female human induced pluripotent stem cell (hiPSC) lines exhibit considerable variability in X-inactivation status. Some lines maintain one transcriptionally active X chromosome (Xa) and one inactive X (Xi) from donor cells. However, hiPSC lines that have two Xas are infrequently produced. We show here Xinactivation status in female hiPSC lines depends on derivation conditions. hiPSC lines generated using the Kyoto method, which employs leukemia inhibitory factor (LIF)-expressing SNL feeders, frequently had two Xas. Lines derived on other feeders maintained an Xi. In addition, there appears to be a window in which SNL feeders promote Xi-reactivation. Upon differentiation, Xa/Xa hiPSCs silenced one X. The efficient production of Xa/Xa hiPSC lines provides unprecedented opportunities to understand human X-reactivation and inactivation.
Project description:Female human induced pluripotent stem cell (hiPSC) lines exhibit considerable variability in X-inactivation status. Some lines maintain one transcriptionally active X chromosome (Xa) and one inactive X (Xi) from donor cells. However, hiPSC lines that have two Xas are infrequently produced. We show here Xinactivation status in female hiPSC lines depends on derivation conditions. hiPSC lines generated using the Kyoto method, which employs leukemia inhibitory factor (LIF)-expressing SNL feeders, frequently had two Xas. Lines derived on other feeders maintained an Xi. In addition, there appears to be a window in which SNL feeders promote Xi-reactivation. Upon differentiation, Xa/Xa hiPSCs silenced one X. The efficient production of Xa/Xa hiPSC lines provides unprecedented opportunities to understand human X-reactivation and inactivation.
Project description:Female human induced pluripotent stem cell (hiPSC) lines exhibit considerable variability in X-inactivation status. Some lines maintain one transcriptionally active X chromosome (Xa) and one inactive X (Xi) from donor cells. However, hiPSC lines that have two Xas are infrequently produced. We show here Xinactivation status in female hiPSC lines depends on derivation conditions. hiPSC lines generated using the Kyoto method, which employs leukemia inhibitory factor (LIF)-expressing SNL feeders, frequently had two Xas. Lines derived on other feeders maintained an Xi. In addition, there appears to be a window in which SNL feeders promote Xi-reactivation. Upon differentiation, Xa/Xa hiPSCs silenced one X. The efficient production of Xa/Xa hiPSC lines provides unprecedented opportunities to understand human X-reactivation and inactivation. Gene expression patterns were compared between several human embryonic stem cell (hESC) and hiPSC lines. Gene expression ratios between genes on X and those on autosomes were calculated from each cell lines.
Project description:Female human induced pluripotent stem cell (hiPSC) lines exhibit considerable variability in X-inactivation status. Some lines maintain one transcriptionally active X chromosome (Xa) and one inactive X (Xi) from donor cells. However, hiPSC lines that have two Xas are infrequently produced. We show here Xinactivation status in female hiPSC lines depends on derivation conditions. hiPSC lines generated using the Kyoto method, which employs leukemia inhibitory factor (LIF)-expressing SNL feeders, frequently had two Xas. Lines derived on other feeders maintained an Xi. In addition, there appears to be a window in which SNL feeders promote Xi-reactivation. Upon differentiation, Xa/Xa hiPSCs silenced one X. The efficient production of Xa/Xa hiPSC lines provides unprecedented opportunities to understand human X-reactivation and inactivation. Gene expression patterns were compared between several human embryonic stem cell (hESC) and hiPSC lines. Gene expression ratios between genes on X and those on autosomes were calculated from each cell lines.
Project description:During interphase, the inactive X chromosome (Xi) adopts an unusual 3D configuration known as the Barr body and is largely transcriptionally silent. Despite the importance of X inactivation, little is known about the 3D configuration of Xi and its relationship to gene silencing. We recently showed that in humans, Xi exhibits two distinctive structural features. First, Xi is partitioned into two huge intervals, called superdomains, such that pairs of loci in each superdomain show an enhanced contact frequency with one another. The boundary between the two superdomains lies near DXZ4, a macrosatellite repeat spanning ~300kb, whose Xi allele extensively binds the protein CTCF. Second, Xi exhibits extremely large loops, up to 77Mb long, called superloops. DXZ4 lies at the anchor of several superloops. Here, we use 3D mapping to study the structure of Xi, focusing on the role of DXZ4. We show that superloops and superdomains are conserved across mammals. We develop a novel variant of our in situ Hi-C protocol, dubbed COLA (COncatemer Ligation Assay) to probe the higher order structures formed by the superloops. In COLA, in situ proximity ligation of multiple extremely short fragments produced by the enzyme CviJI is used to efficiently map simultaneous proximity among three or more loci. Using data from Hi-C and COLA, we demonstrate that DXZ4 and other superloop anchors tend to co-locate simultaneously within the same cells, a result that is confirmed by 3D-FISH. Finally, we examine the effects of deleting DXZ4 from Xi in human cells. Using in situ Hi-C, microscopy, and RNA-FISH, we show that superdomains and superloops disappear; that Xi frequently dissociates into multiple separate structures; and that transcriptional silencing on Xi is compromised. Deletion of DXZ4 from the active X chromosome (Xa) has no such effect. Thus, DXZ4 is essential for proper folding and silencing of Xi. Hi-C protocol was used on wildtype and DXZ4-deleted cells to examine the structure of Xi. A novel variant of our in situ Hi-C protocol, dubbed COLA (COncatemer Ligation Assay), was developed to probe the higher order structures formed by the superloops. This series also includes RNA-seq data on Retinal Pigmented Epithelial Cells (hTERT-RPE1). At the time of submission, processed data were available only for the RNA-seq samples. Submitter states that processed data files for HiC samples will be added to this series in the future.
Project description:During interphase, the inactive X chromosome (Xi) adopts an unusual 3D configuration known as the Barr body and is largely transcriptionally silent. Despite the importance of X inactivation, little is known about the 3D configuration of Xi and its relationship to gene silencing. We recently showed that in humans, Xi exhibits two distinctive structural features. First, Xi is partitioned into two huge intervals, called superdomains, such that pairs of loci in each superdomain show an enhanced contact frequency with one another. The boundary between the two superdomains lies near DXZ4, a macrosatellite repeat spanning ~300kb, whose Xi allele extensively binds the protein CTCF. Second, Xi exhibits extremely large loops, up to 77Mb long, called superloops. DXZ4 lies at the anchor of several superloops. Here, we use 3D mapping to study the structure of Xi, focusing on the role of DXZ4. We show that superloops and superdomains are conserved across mammals. We develop a novel variant of our in situ Hi-C protocol, dubbed COLA (COncatemer Ligation Assay) to probe the higher order structures formed by the superloops. In COLA, in situ proximity ligation of multiple extremely short fragments produced by the enzyme CviJI is used to efficiently map simultaneous proximity among three or more loci. Using data from Hi-C and COLA, we demonstrate that DXZ4 and other superloop anchors tend to co-locate simultaneously within the same cells, a result that is confirmed by 3D-FISH. Finally, we examine the effects of deleting DXZ4 from Xi in human cells. Using in situ Hi-C, microscopy, and RNA-FISH, we show that superdomains and superloops disappear; that Xi frequently dissociates into multiple separate structures; and that transcriptional silencing on Xi is compromised. Deletion of DXZ4 from the active X chromosome (Xa) has no such effect. Thus, DXZ4 is essential for proper folding and silencing of Xi.
Project description:Firre encodes a lncRNA involved in nuclear organization in mammals. Here we find that Firre RNA is transcribed from the active X chromosome (Xa) and exerts trans-acting effects on the inactive X chromosome (Xi). Allelic deletion of Firre on the Xa in a mouse hybrid fibroblast cell line results in a dramatic loss of the histone modification H3K27me3 and of components of the PRC2 complex on the Xi as well as the disruption of the perinucleolar location of the Xi. These features are measurably rescued by ectopic expression of a mouse or human Firre/FIRRE cDNA transgene, strongly supporting a conserved trans-acting role of the Firre transcript in maintaining the Xi heterochromatin environment. Surprisingly, CTCF occupancy is decreased on the Xi upon loss of Firre RNA, but is partially recovered by ectopic transgene expression, suggesting a functional link between Firre RNA and CTCF in maintenance of epigenetic features and/or location of the Xi. Loss of Firre RNA results in dysregulation of genes implicated in cell division and development, but not in reactivation of genes on the Xi, which retains its bipartite structure despite some changes in chromatin contact distribution. Allelic deletion or inversion of Firre on the Xi causes localized redistribution of chromatin contacts, apparently dependent on the orientation of CTCF binding sites clustered at the locus. Thus, the Firre locus and its RNA have roles in the maintenance of epigenetic features and structure of the Xi.
Project description:Females show an advantage in lifespan and cognition in aging human populations. The X chromosome is a major source of sex difference, as female mammals harbor an inactive (Xi) and active (Xa) following X chromosome inactivation (XCI). Whether Xi – or the silent X – can activate in the aging brain and thus increase X dose is unknown. Here, we performed single nuclei RNA-sequencing in the young and aging hippocampus of female mice and applied allele-specific computational analysis. We show that aging remodels transcription of Xi and Xa across hippocampal cell types. Aging preferentially induced gene expression changes on the X chromosomes compared to the autosomes. Xi underwent activation and repression of select genes, particularly in dentate gyrus neurons, critical to learning and memory.