Early-adulthood spike in protein translation drives aging via juvenile hormone/germline signaling
Ontology highlight
ABSTRACT: Protein translation (PT) declines with age in invertebrates, rodents, and humans1-6. It has been assumed that elevated PT at young ages is beneficial to health and PT ends up dropping as a passive byproduct of aging. In Drosophila, we show that a transient elevation in PT during early-adulthood exerts long-lasting negative impacts on aging trajectories and proteostasis in later-life. Blocking the early-life PT elevation robustly improves life-/health-span and prevents age-related protein aggregation, whereas transiently inducing early-life PT surge in long-lived fly strains abolishes their longevity/proteostasis benefits. The early-life PT elevation triggers proteostatic dysfunction, silences stress responses, and drives age-related functional decline via juvenile hormone-lipid transfer protein axis and germline signaling. Our findings suggest that PT is adaptively suppressed after early-adulthood, alleviating later-life proteostatic burden, slowing down age-related functional decline, and improving lifespan. Our work provides a novel theoretical framework for understanding how lifetime PT dynamics shape future aging trajectories.
ORGANISM(S): Drosophila melanogaster
PROVIDER: GSE239506 | GEO | 2023/08/01
REPOSITORIES: GEO
ACCESS DATA