LncRNA-ZFAS1, an emerging gate-keeper in DNA damage-dependent transcriptional regulation [ChIP-seq]
Ontology highlight
ABSTRACT: The hereditary information encoded in DNA sequence is intrinsically susceptible to alterations, being continually threatened by a variety of genotoxic perturbations. To safeguard the stability of the genome, eukaryotic cells have evolved a set of sophisticated surveillance system that controls several aspects of the cellular response, including the detection of DNA lesions, a temporary cell cycle arrest, regulation of transcription, and the repair of the damaged DNA. However, it is still poorly understood how the DNA damage checkpoints and stalled RNAPII molecules convert a very limited amount of molecular-level information (even a single DNA lesion) in the context of an otherwise genome into regulation that halts and resumes the cell-cycle engine in a coordinated way. In this study, we reveal a map of extensive lncRNA transcription during DDR by using synchronized cells, leading to the unexpected identification of a poorly characterized mammalian lncRNA-ZFAS1. We describe that ZFAS1 functions as a key player of cellular response to DNA damage in both human and rodent cells by fine tuning RNAPII kinetics, suggesting a lncRNA-dependent transcriptional regulatory axis that maintains genomic stability upon DNA damage in mammalian cells.
ORGANISM(S): Homo sapiens
PROVIDER: GSE239613 | GEO | 2023/08/03
REPOSITORIES: GEO
ACCESS DATA