Viable Mice Produced from 3-factor Induced Pluripoent Stem (iPS) Cells through Tetraploid Complementation
Ontology highlight
ABSTRACT: Ectopic expression of four transcription factors including Oct4, Sox2, Klf4 and c-Myc in differentiated fibroblast cells could reset the cell fate of fibroblast cells to pluripotent state. Subsequently, fully pluripotency of these so-called induced pluripotent stem cells (iPSCs) has been demonstrated as viable mice could be generated autonomously from iPS cells through tetraploid blastocyst complementation. Moreover, the generation of human and patient-specific iPS cells have raised the possibility of utilizing iPS cells clinically. However, the utilization of c-Myc in iPS cells induction greatly increased the incidence of tumorigenecity in the iPS-chimeric mice and also might hinder the clinical application of human iPS cells in the future. Fortunately, c-Myc has been recently found dispensable for iPS induction even though the iPS induction efficiency is greatly reduced in the absence of c-Myc. However, it remains unknown if these three factors-induced iPS cells are fully pluripotent. In the present study, we have successfully demonstrated that 3-factor iPS cells could also be fully pluripotent as viable mice could be generated from 3-factor iPS cells autonomously via tetraploid complementation and moreover, our data indicated that the pluripotency regulatory mechanism in 3-factor iPS cells might be distinct from 4-factor iPS cells.
ORGANISM(S): Mus musculus
PROVIDER: GSE24046 | GEO | 2010/10/19
SECONDARY ACCESSION(S): PRJNA130349
REPOSITORIES: GEO
ACCESS DATA