Histone lysine demethylase 4 family proteins maintain the transcriptional program and adrenergic cellular state of MYCN-amplified neuroblastoma [ATAC-seq]
Ontology highlight
ABSTRACT: Neuroblastoma with MYCN amplification (MNA) is a high-risk disease that requires long-term intensive multimodal therapies. Despite this, high-risk patients have a poor survival rate, which has prompted extensive studies aimed at identifying more effective therapies against neuroblastomas with MNA. Neuroblastoma displays cellular heterogeneity, including more differentiated (adrenergic) and more primitive (mesenchymal) cellular states. Here, we demonstrate that MYCN oncoprotein can promote a cellular state switch in mesenchymal cells to an adrenergic state. This cellular state transition is accompanied by induction of histone lysine demethylase 4 family members (KDM4A-C), which act in concert to control the expression of MYCN and adrenergic core regulatory transcription factors (CRC TF). Pharmacologic inhibition of KDM4 blocks expression of MYCN and the adrenergic CRC transcriptome with genome-wide induction of transcriptionally repressive H3K9me3, resulting in potent anticancer activity against neuroblastomas with MNA by inducing neuroblastic differentiation, apoptosis, and a type I interferon response. Further, KDM4 inhibition in combination with conventional, cytotoxic chemotherapy results in complete tumor responses of xenografts with MNA, without overt toxicity in animals. Thus, KDM4 blockade may be a novel and transformative strategy to target the adrenergic CRC dependencies in MNA neuroblastomas.
Project description:Neuroblastoma with MYCN amplification (MNA) is a high-risk disease that requires long-term intensive multimodal therapies. Less than 50% survival rate of high-risk patients has prompted active and extensive studies to seek more effective therapies against MNA neuroblastomas but with few successes. We show that MYCN transdifferentiates the neuroblastoma cells from mesenchymal state to adrenergic state accompanied with induction of histone lysine demethylase 4 family members (KDM4A-C), all of which act in concert to control the expression of MYCN and adrenergic core regulatory transcription factors (CRC TF). Pharmacologic inhibition of KDM4 blocks expression of MYCN and adrenergic CRC transcriptome with genome-wide induction of transcriptionally repressive H3K9me3, resulting in potent anticancer activity against MNA neuroblastomas by inducing differentiation, apoptosis and type I interferon response. KDM4 inhibition in combination with chemotherapy leads to complete tumor response of MNA xenografts, without overt toxicity in animals. Thus, KDM4 blockade may be a transformative strategy to target the dependency of adrenergic CRC TFs in MNA neuroblastomas.
Project description:Neuroblastoma cell identity depends on a core regulatory circuit (CRC) of transcription factors that incorporate MYCN to drive the oncogenic gene expression program. For neuroblastomas dependent on the adrenergic CRC, treatment with retinoids can inhibit cell growth and induce differentiation in both primary neuroblastomas and cell lines; however, the underlying mechanisms remain unclear. Here we show that when MYCN-amplified neuroblastomas cells are treated with all-trans retinoic acid (ATRA), they undergo modifications of histone H3K27 acetylation and methylation that decommission super-enhancers driving the expression of PHOX2B and GATA3, together with the activation of new super-enhancers that drive high levels of expression of MEIS1, HIC1 and SOX4. These findings indicate that treatment with ATRA can reprogram the enhancer landscape to collapse the adrenergic CRC, which downregulates MYCN expression, while upregulating a new “retino-sympathetic” CRC that causes proliferative arrest and sympathetic differentiation. Thus, we provide mechanisms that account for the beneficial effects of retinoids against high-risk neuroblastoma and explain the rapid downregulation of expression of MYCN despite massive levels of gene amplification.
Project description:Neuroblastoma cell identity depends on a core regulatory circuit (CRC) of transcription factors that incorporate MYCN to drive the oncogenic gene expression program. For neuroblastomas dependent on the adrenergic CRC, treatment with retinoids can inhibit cell growth and induce differentiation in both primary neuroblastomas and cell lines; however, the underlying mechanisms remain unclear. Here we show that when MYCN-amplified neuroblastomas cells are treated with all-trans retinoic acid (ATRA), they undergo modifications of histone H3K27 acetylation and methylation that decommission super-enhancers driving the expression of PHOX2B and GATA3, together with the activation of new super-enhancers that drive high levels of expression of MEIS1, HIC1 and SOX4. These findings indicate that treatment with ATRA can reprogram the enhancer landscape to collapse the adrenergic CRC, which downregulates MYCN expression, while upregulating a new “retino-sympathetic” CRC that causes proliferative arrest and sympathetic differentiation. Thus, we provide mechanisms that account for the beneficial effects of retinoids against high-risk neuroblastoma and explain the rapid downregulation of expression of MYCN despite massive levels of gene amplification.
Project description:Neuroblastoma cell identity depends on a core regulatory circuit (CRC) of transcription factors that incorporate MYCN to drive the oncogenic gene expression program. For neuroblastomas dependent on the adrenergic CRC, treatment with retinoids can inhibit cell growth and induce differentiation in both primary neuroblastomas and cell lines; however, the underlying mechanisms remain unclear. Here we show that when MYCN-amplified neuroblastomas cells are treated with all-trans retinoic acid (ATRA), they undergo modifications of histone H3K27 acetylation and methylation that decommission super-enhancers driving the expression of PHOX2B and GATA3, together with the activation of new super-enhancers that drive high levels of expression of MEIS1, HIC1 and SOX4. These findings indicate that treatment with ATRA can reprogram the enhancer landscape to collapse the adrenergic CRC, which downregulates MYCN expression, while upregulating a new “retino-sympathetic” CRC that causes proliferative arrest and sympathetic differentiation. Thus, we provide mechanisms that account for the beneficial effects of retinoids against high-risk neuroblastoma and explain the rapid downregulation of expression of MYCN despite massive levels of gene amplification.
Project description:Childhood neuroblastomas exhibit plasticity between an undifferentiated neural crest-like “mesenchymal” cell state and a more differentiated sympathetic “adrenergic” cell state. These cell states are governed by autoregulatory transcriptional loops called core regulatory circuitries (CRCs), which drive the early development of sympathetic neuronal progenitors from migratory neural crest cells during embryogenesis. The adrenergic cell identity of neuroblastoma requires LMO1 as a transcriptional co-factor. Both LMO1 expression levels and the risk of developing neuroblastoma in children are associated with a single nucleotide polymorphism G/T that affects a GATA motif in the first intron of LMO1. Here we showed that wild-type zebrafish with the GATA genotype developed adrenergic neuroblastoma, while knock-in of the protective TATA allele at this locus reduced the penetrance of MYCN-driven tumors, which were restricted to the mesenchymal cell state. Whole genome sequencing of childhood neuroblastomas demonstrated that TATA/TATA tumors also exhibited a mesenchymal cell state and were low risk at diagnosis. Thus, conversion of the regulatory GATA to a TATA allele in the first intron of LMO1 reduced the neuroblastoma initiation rate by preventing formation of the adrenergic cell state, a mechanism that was conserved over 400 million years of evolution separating zebrafish and humans.
Project description:MYCN amplification (MNA) is a defining feature of high-risk neuroblastoma (NB) that predicts poor prognosis. However, whether genes within or in close proximity to the MYCN amplicon also contribute to aggressiveness in MNA+ NB remains poorly understood. Here we identify that GREB1, a transcription factor encoding gene neighboring the MYCN locus, is frequently co-expressed with MYCN, and promotes cell survival in MNA+ NB. GREB1 controls gene expression independently of MYCN in MNA+ NB, among which we uncover Myosin 1B (MYO1B) as being highly expressed in MNA+ NB. MYO1B promotes aggressive features, including invasive capacity in vitro, as well as extravasation and distant metastasis in vivo. Global secretome and proteome profiling further delineate MYO1B as a major regulator of secretome reprogramming in MNA+ NB cells. Moreover, we identify the cytokine MIF as an important pro-invasive and pro-metastatic mediator of MYO1B activity. Together, we have identified a putative GREB1-MYO1B-MIF axis as an unconventional mechanism that promotes the aggressiveness of MNA+ NB, and independently of MYCN. Furthermore, we find that MYO1B is upregulated in association with other oncoproteins during cellular transformation, and is dramatically increased in multiple human cancer types, suggesting a crucial role of MYO1B in cancers in addition to MNA+ NB.
Project description:Neuroblastoma is a common childhood malignant tumor of neural crest origin with remarkable heterogeneity in outcomes. Amplification of the oncogene MYCN is strongly associated with highly malignant behaviour and poor prognosis. Here, we used human ESC-derived neural crest model to recapitulate the initiation of MYCN-driven neuroblastoma and to identify MYCN downstream effectors. Our results show that induced deregulation of MYCN in human neural crest progenitor cells is sufficient to induce tumors that recapitulate the pathological and molecular features of human MYCN-amplified neuroblastoma(MNA-NB). By using this platform, we are able to identify a group of 28 genes that are associated with MYCN expression level only in MNA-NB.
Project description:The pediatric extra-cranial tumor neuroblastoma displays a low mutational burden while recurrent copy number alterations are present in most high-risk cases. We identify SOX11 as a dependency transcription factor in adrenergic neuroblastoma based on recurrent chromosome 2p focal gains and amplifications, specific expression in the normal sympatho-adrenal lineage and adrenergic neuroblastoma, regulation by multiple adrenergic specific (super-)enhancers and strong dependency on high SOX11 expression in adrenergic neuroblastomas. SOX11 regulated direct targets include genes implicated in epigenetic control, cytoskeleton and neurodevelopment. Most notably, SOX11 controls chromatin regulatory complexes, including 10 SWI/SNF core components among which SMARCC1, SMARCA4/BRG1 and ARID1A. Additionally, the histone deacetylase HDAC2, PRC1 complex component CBX2, chromatin-modifying enzyme KDM1A/LSD1 and pioneer factor c-MYB are regulated by SOX11. Finally, SOX11 is identified as a core transcription factor of the core regulatory circuitry (CRC) in adrenergic high-risk neuroblastoma with a potential role as epigenetic master regulator upstream of the CRC.
Project description:The pediatric extra-cranial tumor neuroblastoma displays a low mutational burden while recurrent copy number alterations are present in most high-risk cases. We identify SOX11 as a dependency transcription factor in adrenergic neuroblastoma based on recurrent chromosome 2p focal gains and amplifications, specific expression in the normal sympatho-adrenal lineage and adrenergic neuroblastoma, regulation by multiple adrenergic specific (super-)enhancers and strong dependency on high SOX11 expression in adrenergic neuroblastomas. SOX11 regulated direct targets include genes implicated in epigenetic control, cytoskeleton and neurodevelopment. Most notably, SOX11 controls chromatin regulatory complexes, including 10 SWI/SNF core components among which SMARCC1, SMARCA4/BRG1 and ARID1A. Additionally, the histone deacetylase HDAC2, PRC1 complex component CBX2, chromatin-modifying enzyme KDM1A/LSD1 and pioneer factor c-MYB are regulated by SOX11. Finally, SOX11 is identified as a core transcription factor of the core regulatory circuitry (CRC) in adrenergic high-risk neuroblastoma with a potential role as epigenetic master regulator upstream of the CRC.
Project description:The pediatric extra-cranial tumor neuroblastoma displays a low mutational burden while recurrent copy number alterations are present in most high-risk cases. We identify SOX11 as a dependency transcription factor in adrenergic neuroblastoma based on recurrent chromosome 2p focal gains and amplifications, specific expression in the normal sympatho-adrenal lineage and adrenergic neuroblastoma, regulation by multiple adrenergic specific (super-)enhancers and strong dependency on high SOX11 expression in adrenergic neuroblastomas. SOX11 regulated direct targets include genes implicated in epigenetic control, cytoskeleton and neurodevelopment. Most notably, SOX11 controls chromatin regulatory complexes, including 10 SWI/SNF core components among which SMARCC1, SMARCA4/BRG1 and ARID1A. Additionally, the histone deacetylase HDAC2, PRC1 complex component CBX2, chromatin-modifying enzyme KDM1A/LSD1 and pioneer factor c-MYB are regulated by SOX11. Finally, SOX11 is identified as a core transcription factor of the core regulatory circuitry (CRC) in adrenergic high-risk neuroblastoma with a potential role as epigenetic master regulator upstream of the CRC.