ChIP-Seq of SA1, SA2, and Rad21 in RPE-1 and CHM13 cells
Ontology highlight
ABSTRACT: The biorientation of sister chromatids on the mitotic spindle, essential for accurate sister chromatid segregation, relies on critical centromere components including cohesin, the centromere-specific H3 variant CENP-A, and centromeric DNA. Centromeric DNA is highly variable between chromosomes yet must accomplish a similar function. Moreover, how the 50 nm cohesin ring, proposed to encircle sister chromatids, accommodates inter-sister centromeric distances of hundreds of nanometers on the metaphase spindle is a conundrum. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We used ChIP-seq and super-resolution microscopy to examine the geometry of essential centromeric components on human chromosomes. ChIP-seq of SA1, SA2, and Rad21 in human cells demonstrates that cohesin subunits are depleted in -satellite arrays where CENP-A nucleosomes and kinetochores assemble. Cohesin is instead enriched at pericentromeric DNA. Structured illumination microscopy of sister centromeres is consistent, revealing a non-overlapping pattern of CENP-A and cohesin.
ORGANISM(S): Homo sapiens
PROVIDER: GSE240957 | GEO | 2023/10/11
REPOSITORIES: GEO
ACCESS DATA