Transcriptomics

Dataset Information

0

Effect of ChCUC1 induction on gene expression in Cardamine hirsuta leaf development


ABSTRACT: Here we investigate the function of CUC1(CUP-SHAPED COTYLEDON1) in the diversification of leaf forms between simple-leaved Arabidopsis thaliana and compound-leaved Cardamine hirsuta. CUC transcription factors are conserved regulators in leaf margin dissection and leaflet formation. ChCUC1, ChCUC2 and ChCUC3 function redundantly and are required for the leaflet formation in C. hirsuta. Recently we discovered that ChCUC1 has species species-specific expression in young leaves of C.hirsuta. Moreover, interspecies gene transfer of ChCUC1 allele into A.thaliana is sufficient to increase leaf complexity. On this basis, we hypothesize that redeployment of ChCUC1 in leaves contributes to the formation of leaflets instead of serrations. However, the mechanism underlying ChCUC1 regulating cell division, cell polarity, cytoskeleton and thus leaf marginal patterning remains elusive. To this end, we make use of chromatin immunoprecipitation sequencing(ChIP-seq), transcriptomic, comparative genetics and advanced imaging approaches to identify the downstream regulating genes of ChCUC1.

ORGANISM(S): Cardamine hirsuta

PROVIDER: GSE241051 | GEO | 2024/05/31

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2011-03-31 | GSE27482 | GEO
2011-03-30 | E-GEOD-27482 | biostudies-arrayexpress
2010-12-27 | GSE20705 | GEO
2024-05-31 | GSE241208 | GEO
2022-06-22 | E-MTAB-11794 | biostudies-arrayexpress
2021-05-11 | GSE150288 | GEO
2020-03-19 | GSE147149 | GEO
2023-07-30 | E-MTAB-11956 | biostudies-arrayexpress
2016-09-01 | E-GEOD-72134 | biostudies-arrayexpress
2024-05-31 | GSE242999 | GEO