Transcriptomic and epigenetic dissection of spinal ependymomas (SP-EPN) identifies clinically relevant subtypes enriched for tumors with and without NF2 mutation [WES]
Ontology highlight
ABSTRACT: Background: Ependymomas encompass multiple, clinically relevant tumor types based on localization and molecular profiles. Although tumors of the methylation class “spinal ependymoma” (SP-EPN) represent the most common intramedullary neoplasms in children and adults, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical meaning have been described in a large, epigenetically defined series. Methods: We mapped SP-EPN transcriptomes (n=76) to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. In addition, transcriptomic, epigenetic (n=234), genetic (n=140), and clinical analyses (n=115) were integrated for a detailed overview on this entity. Results: Integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord identified mature adult ependymal cells to display highest similarities to SP-EPN. Unsupervised hierarchical clustering of tumor data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype 1 predominantly contained NF2 wild type sequences with regular NF2 expression but revealed more extensive copy number alterations. Subtype 2 harbored previously known germline or sporadic NF2 mutations and was NF2-deficient in most cases, more often showed multilocular disease, and demonstrated a significantly reduced progression-free survival. Conclusion: Based on integrated molecular profiling of a large tumor series we identify two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.
Project description:Background: Ependymomas encompass multiple, clinically relevant tumor types based on localization and molecular profiles. Although tumors of the methylation class “spinal ependymoma” (SP-EPN) represent the most common intramedullary neoplasms in children and adults, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical meaning have been described in a large, epigenetically defined series. Methods: We mapped SP-EPN transcriptomes (n=76) to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. In addition, transcriptomic, epigenetic (n=234), genetic (n=140), and clinical analyses (n=115) were integrated for a detailed overview on this entity. Results: Integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord identified mature adult ependymal cells to display highest similarities to SP-EPN. Unsupervised hierarchical clustering of tumor data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype 1 predominantly contained NF2 wild type sequences with regular NF2 expression but revealed more extensive copy number alterations. Subtype 2 harbored previously known germline or sporadic NF2 mutations and was NF2-deficient in most cases, more often showed multilocular disease, and demonstrated a significantly reduced progression-free survival. Conclusion: Based on integrated molecular profiling of a large tumor series we identify two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.
Project description:Background: Ependymomas encompass multiple, clinically relevant tumor types based on localization and molecular profiles. Although tumors of the methylation class “spinal ependymoma” (SP-EPN) represent the most common intramedullary neoplasms in children and adults, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical meaning have been described in a large, epigenetically defined series. Methods: We mapped SP-EPN transcriptomes (n=76) to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. In addition, transcriptomic, epigenetic (n=234), genetic (n=140), and clinical analyses (n=115) were integrated for a detailed overview on this entity. Results: Integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord identified mature adult ependymal cells to display highest similarities to SP-EPN. Unsupervised hierarchical clustering of tumor data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype 1 predominantly contained NF2 wild type sequences with regular NF2 expression but revealed more extensive copy number alterations. Subtype 2 harbored previously known germline or sporadic NF2 mutations and was NF2-deficient in most cases, more often showed multilocular disease, and demonstrated a significantly reduced progression-free survival. Conclusion: Based on integrated molecular profiling of a large tumor series we identify two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.
Project description:Ependymomas of the spinal cord are rare among children and adolescents, and the individual risk of disease progression is difficult to predict. This study aims at evaluating the prognostic impact of molecular typing of pediatric spinal cord ependymomas. Eighty-three patients with spinal ependymomas ≦ 22 years registered in the HIT-MED database between 1992 and 2022 were included. Forty-seven tumors were analyzed by DNA methylation array profiling. In six cases, HOXB13 and MYCN proteins were detected as surrogate markers for specific methylation classes. With a median follow-up time of 4.9 years (y), 5y- and 10y-overall survival (OS) were 100% and 86%, while 5y- and 10y-progression-free survival (PFS) were 65% and 54%. Myxopapillary ependymoma (SP-MPE, n=32, 63%) was the most common molecular type followed by spinal ependymoma (SP-EPN, n=17, 33%) and MYCN-amplified ependymoma (n=2, 4%). One case could not be molecularly classified, and one was reclassified as anaplastic pilocytic astrocytoma. 5y-PFS did not significantly differ between SP-MPE and SP-EPN (65% versus 78%, p=0.64). MYCN-amplification was associated with early relapses (<2.3y) in both cases and death in one patient. Patients with SP-MPE subtype B (n=9) showed a non-significant trend for better 5y-PFS compared to subtype A (n=18; 86% versus 56%, p=0.15). The extent of resection and WHO tumor grades significantly influenced PFS in a uni- and multivariate analysis.
Project description:Ependymoma (EPN) is a type of brain tumour.. Here we present a novel subtype of spinal ependymoma, that shows an anaplastic morphology, OLIG2 and MYCN positvity in immunostaining and a distinct epigenetic and proteomic profile.
Project description:The diagnosis of ependymoma has moved from a purely histopathological review with limited prognostic value to an integrated diagnosis, relying heavily on molecular information. However, as the integrated approach is still novel and some molecular ependymoma subtypes are quite rare, few studies have correlated integrated pathology and clinical outcome, often focusing on small series of single molecular types. We collected data from 2023 ependymomas as classified by DNA methylation profiling, consisting of 1736 previously published and 287 unpublished methylation profiles. Methylation data and clinical information were correlated, and an integrated model was developed to predict progression-free survival. Patients with EPN-PFA, EPN-ZFTA, and EPN-MYCN tumors showed the worst outcome with 10-year overall survival rates of 56%, 62%, and 32%, respectively. EPN-PFA harbored chromosome 1q gains and/or 6q losses as markers for worse survival. In supratentorial EPN-ZFTA, a combined loss of CDKN2A and B indicated worse survival, whereas a single loss did not. Twelve out of 200 EPN-ZFTA (6%) were located in the posterior fossa, and these tumors relapsed or progressed even earlier than supratentorial tumors with a combined loss of CDKN2A/B. Patients with MPE and PF-SE, generally regarded as non-aggressive tumors, only had a 10-year progression-free survival of 59% and 65%, respectively. For the prediction of the 5-year progression-free survival, Kaplan-Meier estimators based on the molecular subtype, a Support Vector Machine based on methylation, and an integrated model based on clinical factors, CNV data, and predicted methylation scores achieved balanced accuracies of 66%, 68%, and 73%, respectively. Excluding samples with low prediction scores resulted in balanced accuracies of over 80%.
Project description:Epigenetic dysregulation is a universal feature of cancer that results in altered patterns of gene expression that drive malignancy. Brain tumors exhibit subtype-specific epigenetic alterations, however the molecular mechanisms responsible for these diverse epigenetic states remain unclear. Here we show that the developmental transcription factor Sox9 differentially regulates epigenomic states in high-grade glioma (HGG) and ependymoma (EPN). These contrasting roles for Sox9 correspond with protein interactions with histone deacetylating complexes in HGG, and association with the Rela oncofusion in EPN. Together, our studies demonstrate how epigenomic states are differentially regulated in distinct subtypes of brain tumors, while revealing divergent roles for Sox9 in HGG and EPN tumorigenesis.
Project description:Background: A methylation-based classification of ependymoma has recently found broad application. However, the diagnostic advantage and implications for treatment decisions remain unclear. Here, we retrospectively evaluate the impact of surgery and radiotherapy on outcome after molecular reclassification of adult intracranial ependymomas. Methods: Tumors diagnosed as intracranial ependymomas from 170 adult patients collected from eight diagnostic institutions were subjected to DNA methylation profiling. Molecular classes, patient characteristics, and treatment were retrospectively correlated with progression-free survival (PFS). Results: The classifier indicated an ependymal tumor in 73.5%, a different tumor entity in 10.6% and non-classifiable tumors in 15.9% of cases, respectively. The most prevalent molecular classes were posterior fossa ependymoma group B (EPN-PFB, 32.9%), posterior fossa subependymoma (PF-SE, 25.9%), and supratentorial ZFTA fusion-positive ependymoma (EPN-ZFTA, 11.2%). With a median follow-up of 60.0 months, the 5- and 10-year-PFS rates were 64.5% and 41.8% for EPN-PFB, 67.4% and 45.2% for PF-SE and 60.3% and 60.3% for EPN-ZFTA. In EPN-PFB, but not in other molecular classes, gross total resection (p=0.009) and postoperative radiotherapy (p=0.007) were significantly associated with improved PFS in multivariable analysis. Histological tumor grading (WHO 2 vs. 3) was not a predictor of prognosis within molecularly defined ependymoma classes. Conclusions: DNA methylation profiling improves diagnostic accuracy and risk stratification in adult intracranial ependymoma. The molecular class of PF-SE is unexpectedly prevalent among adult tumors with ependymoma histology and relapsed as frequently as EPN-PFB, despite the supposed benign nature. Gross total resection and radiotherapy may represent key factors in determining the outcome of EPN-PFB patients.
Project description:Ependymoma (EPN) is the third most common central nervous system (CNS) tumor in childhood and, recently, has been classified in nine robust molecular subgroups (Pajtler et al., 2015). However, molecular and clinical features of pediatric EPNs from Brazilian cohorts remain unexplored. Herein, we aimed to analyze the gene expression profile among three different molecular subgroups: ST-EPN-RELA, ST-EPN-YAP1 and PF-EPN-A.
Project description:Two distinct groups of posterior fossa ependymoma, PF-EPN-A and PF-EPN-B have been identified in children and are often associated with widely distinct outcomes. We have identified an ultra-high-risk PF-EPN-A ependymoma with 6q loss. We performed RNA sequencing of posterior fossa ependymoma A (PF-EPN-A) tumor samples with chromosome 6q loss and balanced to understand the differences in 6q loss at the transcriptomic level
Project description:Inflammatory response has been identified as a molecular signature of high-risk Group A ependymoma (EPN). To better understand the biology of this phenotype and aid therapeutic development, transcriptomic data from Group A and B EPN patient tumor samples, and additional malignant and normal brain data, were analyzed to identify the mechanism underlying EPN group A inflammation. Gene expression profiles of Group A and B EPN were contrasted to identify inflammatory transcriptional profiles (GSEA analysis). Candidate inflammatory mechanism genes were examined across a broader cohort of pediatric and adult brain tumor types and normal brain. Gene expression profiles were generated from surgical tumor and normal brain samples (n=149) using Affymetrix HG-U133plus2 chips (Platform GPL570).