Distal chromosome 6q harbors a haploinsufficient tumor suppressor gene that regulates PI3K signaling in glioblastoma
Ontology highlight
ABSTRACT: Glioblastoma is a universally fatal disease characterized by remarkable molecular heterogeneity. Prognostic biomarkers in glioblastoma have implications for patient management and drug development but are currently limited. In this study, we analyzed exome-wide human glioblastoma somatic copy number alteration data and discovered cytoband 6q27 as an independent poor prognostic marker across multiple glioblastoma datasets. We then combined CRISPR-Cas9 data, human spatial transcriptomic data, and human and mouse RNA sequencing data to nominate PDE10A as a potential haploinsufficient tumor suppressor in the 6q27 region. Mouse glioblastoma modeling using the RCAS/tv-a system confirmed that Pde10a suppression induced an aggressive glioma phenotype in vivo. Cell culture analysis showed that decreased Pde10a expression led to increased Pi3k/Akt signaling, a response blocked by selective Pi3k inhibitors. Single nucleus RNA sequencing from our mouse gliomas in vivo, in combination with cell culture validation showed that Pde10a suppression was associated with a proneural to a mesenchymal transition that exhibited increased cell adhesion and decreased cell migration. PDE10A loss was associated with unmethylated MGMT promoter status in human glioblastoma and resistance to temozolomide and radiation therapy in vitro. Our results indicate that patients with glioblastoma harboring PDE10A loss have worse outcomes, increased resistance to standard-of-care therapy, and potentially increased sensitivity to PI3K inhibition.
Project description:Inhibition of phosphodiesterase 10A (PDE10A) promotes cyclic nucleotide signaling, increases striatal activation, and decreases behavioral activity. Enhanced cyclic nucleotide signaling is a well established route to producing changes in gene expression. We hypothesized that chronic suppression of PDE10A activity would have significant effects on gene expression in the striatum. A comparison of the expression profile of PDE10A knockout (KO) mice and wild-type mice after chronic PDE10A inhibition revealed altered expression of 19 overlapping genes with few significant changes outside the striatum or after administration of a PDE10A inhibitor to KO animals. Chronic inhibition of PDE10A produced up-regulation of mRNAs encoding genes that included prodynorphin, synaptotagmin10, phosphodiesterase 1C, glutamate decarboxylase 1, and diacylglycerol O-acyltransferase and a down-regulation of mRNAs encoding choline acetyltransferase and Kv1.6, suggesting long-term suppression of the PDE10A enzyme is consistent with altered striatal excitability and potential utility as a antipsychotic therapy. In addition, up-regulation of mRNAs encoding histone 3 (H3) and down-regulation of histone deacetylase 4, follistatin, and claspin mRNAs suggests activation of molecular cascades capable of neuroprotection. We used lentiviral delivery of cAMP response element (CRE)-luciferase reporter constructs into the striatum and live animal imaging of 2-{4-[-pyridin-4-yl-1-(2,2,2-trifluoro-ethyl)-1H-pyrazol-3-yl]-phenoxymethyl}-quinoline succinic acid (TP-10)-induced luciferase activity to further demonstrate PDE10 inhibition results in CRE-mediated transcription. Consistent with potential neuroprotective cascades, we also demonstrate phosphorylation of mitogen- and stress-activated kinase 1 and H3 in vivo after TP-10 treatment. The observed changes in signaling and gene expression are predicted to provide neuroprotective effects in models of Huntington's disease. n=4-6 per group. WT mice used as a control for PDE10A KO mice, vehicle control for PDE10A inhibitor treatment.
Project description:Phosphodiesterase 10A (PDE10A), by degrading cAMP/cGMP, play critical roles in cardiovascular biology/disease. Cardiotoxicity is a clinical complication of chemotherapy. We aim to determine the role of PDE10A in cancer growth and cardiotoxicity induced by doxorubicin (DOX), a chemotherapy drug. We found that PDE10A deficiency/inhibition alleviated DOX-induced cardiotoxicity in C57Bl/6J mice, including myocardial atrophy, apoptosis, and dysfunction. RNAseq study revealed several PDE10A-regulated signaling associated with DOX-induced cardiotoxicity. In cancer cells, PDE10A inhibition increased the death, decreased the proliferation, and potentiated the effect of DOX in various cancer-cell lines. Importantly, in nude mice with implanted ovarian cancer xenografts, PDE10A inhibition attenuated tumor growth while protected against DOX-induced cardiotoxicity. In isolated cardiomyocytes (CMs), PDE10A contributed to DOX-induced CM death via promoting mitochondrial dysfunction, and to CM atrophy via potentiating foxo3 signaling. Collectively, our study elucidates a novel role for PDE10A in cardiotoxicity and cancer growth in vitro and in vivo, and suggest that PDE10A inhibition may represent a novel strategy in cancer therapy.
Project description:Inhibition of phosphodiesterase 10A (PDE10A) promotes cyclic nucleotide signaling, increases striatal activation, and decreases behavioral activity. Enhanced cyclic nucleotide signaling is a well established route to producing changes in gene expression. We hypothesized that chronic suppression of PDE10A activity would have significant effects on gene expression in the striatum. A comparison of the expression profile of PDE10A knockout (KO) mice and wild-type mice after chronic PDE10A inhibition revealed altered expression of 19 overlapping genes with few significant changes outside the striatum or after administration of a PDE10A inhibitor to KO animals. Chronic inhibition of PDE10A produced up-regulation of mRNAs encoding genes that included prodynorphin, synaptotagmin10, phosphodiesterase 1C, glutamate decarboxylase 1, and diacylglycerol O-acyltransferase and a down-regulation of mRNAs encoding choline acetyltransferase and Kv1.6, suggesting long-term suppression of the PDE10A enzyme is consistent with altered striatal excitability and potential utility as a antipsychotic therapy. In addition, up-regulation of mRNAs encoding histone 3 (H3) and down-regulation of histone deacetylase 4, follistatin, and claspin mRNAs suggests activation of molecular cascades capable of neuroprotection. We used lentiviral delivery of cAMP response element (CRE)-luciferase reporter constructs into the striatum and live animal imaging of 2-{4-[-pyridin-4-yl-1-(2,2,2-trifluoro-ethyl)-1H-pyrazol-3-yl]-phenoxymethyl}-quinoline succinic acid (TP-10)-induced luciferase activity to further demonstrate PDE10 inhibition results in CRE-mediated transcription. Consistent with potential neuroprotective cascades, we also demonstrate phosphorylation of mitogen- and stress-activated kinase 1 and H3 in vivo after TP-10 treatment. The observed changes in signaling and gene expression are predicted to provide neuroprotective effects in models of Huntington's disease.
Project description:Glioblastoma (GBM) is the most common primary brain tumor in adults with a median survival of approximately 15 months, therefore, more effective treatment options for GBM are required. To identify new drugs targeting glioblastomas, we performed a high throughput drug screen using patient-derived neurospheres cultured to preferentially retain their glioblastoma stem cell (GSC) phenotype.
High throughput drug screening was performed on GSCs followed by a second dose response assay of the 5 identified original hits. A PI3K/mTOR dependency to a proteasome inhibitor (carfilzomib), was confirmed by gain of function and loss of function experiments. Proteasome inhibition response signatures were derived from proteomic and bioinformatic analysis. Molecular mechanism of action was determined using in vitro 3-dimensional (3D) GBM organoid models and in vivo preclinical orthotopic GBM models.
We found that GSCs were highly sensitive to proteasome inhibition due to an underlying dependency on an increased protein synthesis rate, and loss of autophagy, associated with PTEN loss and activation of the PI3K/mTOR pathway. In contrast, combinatory inhibition of autophagy and the proteasome, resulted in enhanced cytotoxicity specifically in GSCs that did express PTEN. Finally, proteasome inhibition specifically increased cell death markers in 3D glioblastoma organoids, suppressed tumor growth, and increased survival of mice orthotopically engrafted with GSCs. As perturbations of the PTEN/ PI3K axis occur in nearly 50% of GBMs, these findings suggest that a significant fraction of these tumors could be vulnerable to proteasome inhibition.
Project description:Glioblastoma (GBM) is the most lethal primary brain cancer that lacks effective molecular targeted therapies. PI3K/AKT/mTOR signaling pathway is activated in 90% of all Glioblastoma Multiforme (GBM) tumors. To gain insight into the impact of the PI3K Pathway on GBM metabolism, we treated U87MG GBM cells with 50nM NVP-BEZ235 (PI3K and mTOR a dual inhibitor) for four days and identified differentially expressed genes with RNA-seq analysis.
Project description:The goal of this study was to investigate molecular pathways associated with PDE10A in ovarian cancer. We used CRISPR/Cas9 to knockout PDE10A in SKOV3 cells. We used the Illumina NextSeq500 to generate between 30-35 million paired end 75bp sequencing reads per sample for transcript level abundance.
Project description:We found that GSCs were highly sensitive to proteasome inhibition due to an underlying dependency on an increased protein synthesis rate, and loss of autophagy, associated with PTEN loss and activation of the PI3K/mTOR pathway. In contrast, combinatory inhibition of autophagy and the proteasome, resulted in enhanced cytotoxicity specifically in GSCs that did express PTEN. Finally, proteasome inhibition specifically increased cell death markers in 3D glioblastoma organoids, suppressed tumor growth, and increased survival of mice orthotopically engrafted with GSCs. As perturbations of the PI3K/mTOR pathway occur in nearly 50% of GBMs, these findings suggest that a significant fraction of these tumors could be vulnerable to proteasome inhibition.
Project description:Background. We aimed to develop a gene expression-based prognostic signature for isocitrate dehydrogenase (IDH) wild-type glioblastoma using clinical trial datasets representative of glioblastoma clinical trial populations. Results. NanoString data were available from 512 patients in the discovery ATE dataset. Elastic net identified a prognostic signature of nine genes (CHEK1, GPR17, IGF2BP3, MGMT, MTHFD1L, PTRH2, SOX11, S100A9, and TFRC). Translating weighted elastic net scores to an average z-score signature conserved the prognostic value of the ATE signature. The z-score signature was prognostic for OS in the ATE dataset (P < 0.0001), as expected, and in the validation cohorts (AVAglio, P < 0.0001; GLARIUS, P = 0.021; UCLA, P = 0.0037). The signature remained prognostic following adjustment for MGMT promoter methylation status or corticosteroid use at baseline. A positive correlation between the signature and proneural/proliferative subtypes was observed in patients with MGMT non-methylated promoter status. Conclusions. The ATE signature showed prognostic value and may enable clinical trial stratification for IDH wild-type glioblastoma.