Plasma amino acids regulate pancreatic acinar cell proliferation and size via mTORC1 and YAP/TAZ signaling pathways
Ontology highlight
ABSTRACT: Pancreas volume or mass varies more than 3-fold among adult humans. The heterogeneity is likely the result of genetics, diseases, and nutrition. Dietary protein intake and blood amino acid levels are known to affect pancreas mass, but the underlying mechanism is not well understood. The goal of this study is to determine how increased blood amino acid level (hyperaminoacidemia) induces pancreas expansion.Multiple complementary mouse and zebrafish models were used to study the impact of hyperaminoacidemia on pancreatic mass, acinar cell size and proliferation. Blood amino acid levels were manipulated by dietary protein content, or by pharmacologic or genetic interruption of glucagon signaling (IGS). The activation of mammalian target of rapamycin complex 1 (mTORC1) and Yes-associated protein 1 (YAP) were determined by pS6 and YAP staining. Sirolimus administration in mice and knockdown of solute carrier family 38 member 5b (slc38a5b) and yap/taz in zebrafish were used to determine the role of mTORC1, SLC38A5 and YAP/TAZ in acinar cell proliferation and pancreas expansion. We found that the IGS-induced pancreas expansion was the result of acinar cell proliferation and hypertrophy. Hyperaminoacidemia was the likely mediator as pancreas expansion was blunted by a low protein diet in mice and by knocking down the most highly expressed amino acid transporter gene, slc38a5b, in zebrafish lacking both glucagon receptor genes (gcgr-/-). In GCGR-Ab treated mice, inhibition of mTORC1 attenuated both hyperplasia and hypertrophy of acinar cells. There was a gene expression signature of YAP activation in acinar cells, consistent with increased YAP-expressing acinar cells in GCGR-Ab treated mice and increased fraction of acinar cells with nuclear YAP1 in gcgr-/- zebrafish. Knocking down yap1 or taz decreased mTORC1 activity and acinar cell hyperplasia and hypertrophy in gcgr-/- zebrafish. Hyperaminoacidemia leads to acinar cell proliferation and hypertrophy via activation of both mTORC1 and YAP pathways. The study discovered a previously unrecognized role of the YAP/Taz pathway in hyperaminoacidemia-induced acinar cell hypertrophy and hyperplasia.
Project description:Angiogenesis, the process by which endothelial cells (ECs) form new blood vessels from existing ones, is intimately linked to the tissue's metabolic milieu and often occurs at nutrient-deficient sites. However, ECs rely on sufficient metabolic resources to support growth and proliferation. How endothelial nutrient acquisition and usage are regulated is unknown. Here we show that these processes are dictated by YAP/TAZ-TEAD – a transcriptional module whose function is highly responsive to changes in the tissue environment. ECs lacking YAP/TAZ or their transcriptional partners, TEAD1, 2, and 4 fail to divide, resulting in stunted vascular growth in mice. Conversely, activation of TAZ, the more abundant paralogue in ECs, boosts proliferation, leading to vascular hyperplasia. We find that YAP/TAZ promote angiogenesis by fueling nutrient mTORC1 signaling. By orchestrating the transcription of a repertoire of cell-surface transporters, YAP/TAZ-TEAD stimulate the import of amino acids and other essential nutrients, thereby enabling mTORC1 pathway activation. Dissociating mTORC1 from these nutrient inputs – elicited by the loss of Rag GTPases – inhibits mTORC1 activity and prevents YAP/TAZ-dependent vascular growth. These findings define a pivotal role for YAP/TAZ-TEAD in steering endothelial mTORC1 and illustrate the essentiality of coordinated nutrient fluxes in the vasculature.
Project description:Glucagon receptor (GCGR) is a potential target for diabetes therapy. Several emerging GCGR antagonism-based therapies are under pre-clinical and clinical development. However, the GCGR antagonism as well as GCGR deficient animal accompanied with α-cell hyperplasia and hyperglucagonemia, which may limit the application of GCGR antagonism. To better understand the physiological changes in the α cells during the GCGR disruption, we performed the single cell sequencing of α cells isolated from control and gcgr-/- zebrafish. We found that α cells in gcgr-/- zebrafish dramatically increased glucagon (both gcga and gcgb) expression, we also found that several transcriptional factors that regulate glucagon expression were also increased. Based on the sequencing data, we further experimentally confirmed that gcgr-/- up-regulated glucagon mRNA level by in situ hybridization, and the gcgr-/- increased glucagon promoter activity indicated by reporter line Tg(gcga: GFP). Moreover, our results also revealed that α cells increased glucagon granule population and glucagon level in gcgr-/- zebrafish. These data suggested that hyperglucagonemia in the organism of GCGR antagonism not only contributed by the α-cell hyperplasia but also contributed by the increased glucagon expression and secretion from α cells. Our study provided more comprehensive understanding of physiological changes of α-cell during the GCGR disruption.
Project description:Tissue homeostasis requires lineage fidelity of stem cells. Dysregulation of cell fate specification and differentiation leads to various diseases, yet the cellular and molecular processes remain elusive. We demonstrate that YAP/TAZ activation reprograms airway secretory cells to lose cellular identity and acquire squamous alveolar type 1 (AT1) fate in the lungs. Significantly, this cell fate conversion is mediated via distinctive transitional cell states of Damage-Associated Transient Progenitors (DATPs), recently known to emerge during injury repair, in mouse and human lungs. Further, YAP/TAZ signaling is identified to realign the amino acid metabolism by modulating mTORC1-ATF4 activity, which is integral to fate conversion of secretory cells into AT1 fate. We observed aberrant activation of the YAP/TAZ-mTORC1-ATF4 axis in the altered airway epithelium of human pulmonary fibrosis where the emergence of DATPs and A1 cells is prominent. Finally, genetic and pharmacologic inhibition of mTORC1 activity restores lineage alteration and subepithelial fibrosis driven by YAP/TAZ activation, proposing a potential therapeutic target for human fibrotic lung diseases.
Project description:The Hippo pathway downstream effectors YAP and TAZ display oncogenic potential via their transcriptional co-activator function, mediated primarily by binding to TEAD transcription factors. Many studies have focused on identifying YAP/TAZ-TEAD target genes, but their role in the regulation of protein synthesis has remained largely unexplored. Here we show that YAP activation is sufficient to overcome the global translation restriction of 5TOP-containing mRNAs, which is induced by serum deprivation and dependent on the inactivation of mTORC1. We found that YAP/TAZ repressed the expression of DDIT4, a negative regulator of mTORC1 whose expression is otherwise upregulated by serum deprivation. Forced expression of DDIT4 was sufficient to suppress translation and transformative potential of serum-unresponsive uveal melanoma cells, which harbor G protein mutations. Our findings highlight crosstalk between Hippo-YAP/TAZ and mTORC1 pathways in the regulation of translation and offer a new perspective towards understanding YAP/TAZ-driven malignancies.
Project description:The Hippo pathway downstream effectors YAP and TAZ display oncogenic potential via their transcriptional co-activator function, mediated primarily by binding to TEAD transcription factors. Many studies have focused on identifying YAP/TAZ-TEAD target genes, but their role in the regulation of protein synthesis has remained largely unexplored. Here we show that YAP activation is sufficient to overcome the global translation restriction of 5TOP-containing mRNAs, which is induced by serum deprivation and dependent on the inactivation of mTORC1. We found that YAP/TAZ repressed the expression of DDIT4, a negative regulator of mTORC1 whose expression is otherwise upregulated by serum deprivation. Forced expression of DDIT4 was sufficient to suppress translation and transformative potential of serum-unresponsive uveal melanoma cells, which harbor G protein mutations. Our findings highlight crosstalk between Hippo-YAP/TAZ and mTORC1 pathways in the regulation of translation and offer a new perspective towards understanding YAP/TAZ-driven malignancies.
Project description:The Hippo pathway downstream effectors YAP and TAZ display oncogenic potential via their transcriptional co-activator function, mediated primarily by binding to TEAD transcription factors. Many studies have focused on identifying YAP/TAZ-TEAD target genes, but their role in the regulation of protein synthesis has remained largely unexplored. Here we show that YAP activation is sufficient to overcome the global translation restriction of 5TOP-containing mRNAs, which is induced by serum deprivation and dependent on the inactivation of mTORC1. We found that YAP/TAZ repressed the expression of DDIT4, a negative regulator of mTORC1 whose expression is otherwise upregulated by serum deprivation. Forced expression of DDIT4 was sufficient to suppress translation and transformative potential of serum-unresponsive uveal melanoma cells, which harbor G protein mutations. Our findings highlight crosstalk between Hippo-YAP/TAZ and mTORC1 pathways in the regulation of translation and offer a new perspective towards understanding YAP/TAZ-driven malignancies.
Project description:The optic vesicle comprises a pool of bi-potential progenitor cells from which the retinal pigment epithelium (RPE) and neural retina fates segregate during ocular morphogenesis. Several transcription factors and signaling pathways have been shown to be important for RPE maintenance and differentiation, but an understanding of the initial fate specification and determination of this ocular cell type is lacking. We show that Yap/Taz-Tead activity is necessary and sufficient for optic vesicle progenitors to adopt RPE identity in zebrafish. A Teadresponsive transgene is expressed within the domain of the optic cup from which RPE arises, and Yap immunoreactivity localizes to the nuclei of prospective RPE cells. yap (yap1) mutants lack a subset of RPE cells and/or exhibit coloboma. Loss of RPE in yap mutants is exacerbated in combination with taz (wwtr1) mutant alleles such that, when Yap and Taz are both absent, optic vesicle progenitor cells completely lose their ability to form RPE. The mechanism of Yap dependent RPE cell type determination is reliant on both nuclear localization of Yap and interaction with a Tead co-factor. In contrast to loss of Yap and Taz, overexpression of either protein within optic vesicle progenitors leads to ectopic pigmentation in a dosagedependent manner. Overall, this study identifies Yap and Taz as key early regulators of RPE genesis and provides a mechanistic framework for understanding the congenital ocular defects of Sveinsson’s chorioretinal atrophy and congenital retinal coloboma. 60 pooled eyes from 36 hpf wild type or vsx2:Gal4/dsRed:14xUAS:YapS87A embryos were pooled for one sample. Three wild type and three vsx2:Gal4/dsRed:14xUAS:YapS87A pools were analyzed for RNA.
Project description:Blockade of the glucagon receptor (GCGR) has been shown to improve glycemic control. However, this therapeutic approach also brings side effects, such as α-cell hyperplasia and hyperglucagonemia, and the mechanisms underlying these side effects remain elusive. Here, we conduct single-cell transcriptomic sequencing of islets from male GCGR knockout (GCGR-KO) mice. Our analysis confirms the elevated expression of Gcg in GCGR-KO mice, along with enhanced glucagon secretion at single-cell level. Notably, Vgf (nerve growth factor inducible) is specifically upregulated in α cells of GCGR-KO mice. Inhibition of VGF impairs the formation of glucagon immature secretory granules and compromises glucagon maturation, lead to reduced α-cell hypersecretion of glucagon. We further demonstrate that activation of both mTOR-STAT3 and ERK-CREB pathways, induced by elevated circulation amino acids, is responsible for upregulation of Vgf and Gcg expression following glucagon receptor blockade. Thus, our findings elucidate a previously unappreciated molecular mechanism underlying hyperglucagonemia in GCGR blockade.
Project description:Uncontrolled Transforming growth factor-beta (TGFβ) signaling promotes aggressive metastatic properties in late-stage breast cancers. However, how TGFβ-mediated cues are directed to induce late-stage tumorigenic events is poorly understood, particularly given that TGFβ has clear tumor suppressing activity in other contexts. Here we demonstrate that the transcriptional regulators TAZ and YAP (TAZ/YAP), key effectors of the Hippo pathway, are necessary to promote and maintain TGFβ-induced tumorigenic phenotypes in breast cancer cells. Interactions between TAZ/YAP, TGFβ-activated SMAD2/3, and TEAD transcription factors reveal convergent roles for these factors in the nucleus. Genome-wide expression analyses indicate that TAZ/YAP, TEADs and TGFβ-induced signals coordinate a specific pro-tumorigenic transcriptional program. Importantly, genes cooperatively regulated by TAZ/YAP, TEAD, and TGFβ, such as the novel targets NEGR1 and UCA1, are necessary for maintaining tumorigenic activity in metastatic breast cancer cells. Nuclear TAZ/YAP also cooperate with TGFβ signaling to promote phenotypic and transcriptional changes in non-tumorigenic cells to overcome TGFβ repressive effects. Our work thus identifies crosstalk between nuclear TAZ/YAP and TGFβ signaling in breast cancer cells, revealing novel insight into late-stage disease-driving mechanisms. Expression profiling was conducted following the repression of the transcriptional regulators TAZ and YAP (TAZ/YAP), the TEAD family of transcription factors (TEAD1/2/3/4), or the TGFb signaling pathway (with SB-431542, an inhibitor of the TBRI recpeptor) in human MDA-MB-231-LM2 breast cancer cells treated with TGFβ1. Human MDA-MB-231-LM2-4 breast cancer cells were transfected with control siRNA, or siRNAs targeting TAZ/YAP or all four TEADs and were treated 24 hours later with 500pM TGFβ1 or 5mM SB-431542 for an additional 24 hours. Total RNA was isolated and twelve microarrays in total were performed, with each condition carried out three times on separate days. The Boston University Microarray Core generated the data using the Affymetrix Human Gene 1.0 St Array.