Adipo-glial signaling mediates metabolic adaptation in peripheral nerve regeneration
Ontology highlight
ABSTRACT: The peripheral nervous system harbours a remarkable potential to regenerate after acute nerve trauma. Full functional recovery, however, is rare and critically depends on peripheral nerve Schwann cells that orchestrate break down and resynthesis of myelin and, at the same time, support axonal regrowth. How Schwann cells meet the high metabolic demand required for nerve repair remains poorly understood. We here report that nerve injury induces adipocyte to glial signaling, and identify the adipokine leptin as an upstream regulator of glial metabolic adaptation in regeneration. Signal integration by leptin receptors in Schwann cells ensures efficient peripheral nerve repair by adjusting injury-specific catabolic processes in regenerating nerves, including myelin autophagy and mitochondrial respiration. Our findings propose a model according to which acute nerve injury triggers a therapeutically targetable intercellular crosstalk that modulates glial metabolism, to provide sufficient energy for successful nerve repair.
ORGANISM(S): Mus musculus
PROVIDER: GSE244328 | GEO | 2023/12/12
REPOSITORIES: GEO
ACCESS DATA