Aging Differentially Alters the Transcriptome and Landscape of Chromatin Accessibility in the Male and Female Mouse Hippocampus [ATAC-Seq]
Ontology highlight
ABSTRACT: Long-term memory formation is dependent on gene expression changes in the hippocampal region of the brain. Aging-related memory impairments and incidence of pathological memory disorders such as Alzheimer’s disease differ between males and females, and yet little is known about how aging-related changes to the transcriptome and chromatin environment differs between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus of both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response, cell adhesion, and synaptic function, and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic activity. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Overall, sex differences in both gene expression and chromatin accessibility were amplified with aging, revealing that although some aspects of hippocampal aging are sex-independent, underlying sex differences in gene expression and chromatin dynamics in aging may shed light on sex differences in aging-related and pathological memory loss.
Project description:Long-term memory formation is dependent on gene expression changes in the hippocampal region of the brain. Aging-related memory impairments and incidence of pathological memory disorders such as Alzheimer’s disease differ between males and females, and yet little is known about how aging-related changes to the transcriptome and chromatin environment differs between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus of both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response, cell adhesion, and synaptic function, and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic activity. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Overall, sex differences in both gene expression and chromatin accessibility were amplified with aging, revealing that although some aspects of hippocampal aging are sex-independent, underlying sex differences in gene expression and chromatin dynamics in aging may shed light on sex differences in aging-related and pathological memory loss.
Project description:Long-term memory formation is dependent on gene expression changes in the hippocampal region of the brain. Aging-related memory impairments and incidence of pathological memory disorders such as Alzheimer’s disease differ between males and females, and yet little is known about how aging-related changes to the transcriptome and chromatin environment differs between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus of both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response, cell adhesion, and synaptic function, and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic activity. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Overall, sex differences in both gene expression and chromatin accessibility were amplified with aging, revealing that although some aspects of hippocampal aging are sex-independent, underlying sex differences in gene expression and chromatin dynamics in aging may shed light on sex differences in aging-related and pathological memory loss.
Project description:Sex-dependent differences in kidney function have been recognized. However, the molecular mechanisms underlying these differences remain largely unexplored. Advances in genomics and proteomic technologies now allow for an extensive characterization of sex differences. In this study, the authors apply multi-omics approaches integrating RNA-seq, ATAC-seq, and proteomics to investigate gene expression, chromatin accessibility, and protein expression between male and female mouse proximal tubules. This study identifies a large number of sex-biased genes and proteins associated with various kidney functions, including metabolism and transport processes. The authors demonstrate that sex differences may also arise from differences in interaction between transcription factors and accessible chromatin regions. A comprehensive web resource is provided to the research community to advance understanding of sex differences.
Project description:Here we map six chromatin modifications -- H3K4me1, H3K4me3, H3K27ac, H3K36me3, H3K9me3, and H3K27me3 -- genome-wide in male and female mouse liver in order to identify histone modifications that characterize sex-biased genes and sex-biased DNase hypersensitive sites and their regulation by plasma growth hormone (GH) profiles, which are sexually dimorphic. We find distinct mechanisms of regulation in male liver and female liver: sex-dependent K27me3-mediated repression is an important mechanism of repression of female-biased, but not of male-biased, genes, and a sex-dependent K4me1 distribution, suggesting nucleosome repositioning by pioneer factors, is observed at male-biased, but not female-biased, regulatory sites. STAT5-mediated activation is most strongly associated with sex-biased chromatin modifications, while BCL6-mediated repression primarily occurs in association with sex-independent chromatin modifications, both at binding sites and at target genes. These samples are part of a study on chromatin states in male and female mouse and their role in sex-biased liver gene expression (A Sugathan and DJ Waxman (2013) Molec Cell Biol).
Project description:Here we map six chromatin modifications -- H3K4me1, H3K4me3, H3K27ac, H3K36me3, H3K9me3, and H3K27me3 -- genome-wide in male and female mouse liver in order to identify histone modifications that characterize sex-biased genes and sex-biased DNase hypersensitive sites and their regulation by plasma growth hormone (GH) profiles, which are sexually dimorphic. We find distinct mechanisms of regulation in male liver and female liver: sex-dependent K27me3-mediated repression is an important mechanism of repression of female-biased, but not of male-biased, genes, and a sex-dependent K4me1 distribution, suggesting nucleosome repositioning by pioneer factors, is observed at male-biased, but not female-biased, regulatory sites. STAT5-mediated activation is most strongly associated with sex-biased chromatin modifications, while BCL6-mediated repression primarily occurs in association with sex-independent chromatin modifications, both at binding sites and at target genes. These samples are part of a study on chromatin states in male and female mouse and their role in sex-biased liver gene expression (A Sugathan and DJ Waxman (2013) Molec Cell Biol). Examination of six different histone modifications in male and female mouse liver.
Project description:Sex-dependent pituitary growth hormone (GH) secretory patterns determine the sex-biased expression of >1,000 genes in mouse and rat liver, affecting lipid and drug metabolism, inflammation and disease. A fundamental biological question is how robust differential expression can be achieved for hundreds of sex-biased genes simply based on the GH input signal pattern: pulsatile GH stimulation in males vs. near-continuous GH exposure in females. STAT5 is an essential transcriptional mediator of the sex-dependent effects of GH in the liver, but the mechanisms that underlie its sex-dependent actions are obscure. Here we elucidate the dynamic, sex-dependent binding of STAT5 and the GH/STAT5-regulated repressor BCL6 to mouse liver chromatin, revealing the counteractive interplay between these two regulators of liver sex-specificity. Our findings establish a close correlation between sex-dependent STAT5 binding and sex-biased target gene expression. Moreover, sex-dependent STAT5 binding correlated positively with sex-biased DNase hypersensitivity and H3-K4me1 and H3-K4me3 (activating) marks, correlated negatively with sex-biased H3-K27me3 (repressive) marks, and was associated with sex-differentially enriched motifs for HNF6/CDP factors. Importantly, BCL6 binding was preferentially associated with repression of female-biased STAT5 targets in male liver. Furthermore, BCL6 and STAT5 common targets but not BCL6 unique targets showed strong enrichment for lipid and drug metabolism. These findings provide a comprehensive, genome-wide view of the mechanisms whereby these two GH-regulated transcription factors establish and maintain sex differences affecting liver physiology and disease. The approaches used here to characterize sex-dependent STAT5 and BCL6 binding can be applied to other condition-specific regulatory factors and binding sites and their interplay with co-operative chromatin-binding factors. Mouse livers were excised from individual male and female mice killed at either a peak of STAT5 binding activity, or during the growth hormone (GH) interpulse interval, when STAT5 activity is either low (females) or essentially undetectable (males). Sonicated, cross-linked liver nuclear chromatin was then used to identify STAT5 binding sites by ChIP-Seq.
Project description:MTD project_description Inflammation and decreased stem cell function characterize organism aging, yet the relationship between these factors remains incompletely understood. This study shows that aged hematopoietic stem and progenitor cells exhibit increased ground-stage NF-κB activity, which enhances their responsiveness to undergo differentiation and loss of self-renewal in response to inflammation. The study identifies Rad21/cohesin as a critical mediator of NF-κB signals, by increasing chromatin accessibility of inter-/intra-genic and enhancer regions. Rad21/NF-κB are required for normal differentiation, but limit self-renewal of hematopoietic stem cells (HSCs) during aging and inflammation in an NF-κB dependent manner. HSCs from aged mice fail to downregulate Rad21/cohesin and inflammation/differentiation inducing signals in the resolution phase after acute inflammation. and The inhibition of cohesin/NF-κB is sufficient to revert the hypersensitivity of aged HSPCs to inflammation-induced differentiation. During aging, myeloid-biased HSCs with disrupted and naturally occurring reduced expression of Rad21/cohesin are increasingly selected over lymphoid-biased HSCs. Together, Rad21/cohesin mediated NF-κB signaling limits HSPC function during aging and selects for cohesin deficient HSCs with myeloid skewed differentiation.
Project description:Sex-dependent pituitary growth hormone (GH) secretory patterns determine the sex-biased expression of >1,000 genes in mouse and rat liver, affecting lipid and drug metabolism, inflammation and disease. A fundamental biological question is how robust differential expression can be achieved for hundreds of sex-biased genes simply based on the GH input signal pattern: pulsatile GH stimulation in males vs. near-continuous GH exposure in females. STAT5 is an essential transcriptional mediator of the sex-dependent effects of GH in the liver, but the mechanisms that underlie its sex-dependent actions are obscure. Here we elucidate the dynamic, sex-dependent binding of STAT5 and the GH/STAT5-regulated repressor BCL6 to mouse liver chromatin, revealing the counteractive interplay between these two regulators of liver sex-specificity. Our findings establish a close correlation between sex-dependent STAT5 binding and sex-biased target gene expression. Moreover, sex-dependent STAT5 binding correlated positively with sex-biased DNase hypersensitivity and H3-K4me1 and H3-K4me3 (activating) marks, correlated negatively with sex-biased H3-K27me3 (repressive) marks, and was associated with sex-differentially enriched motifs for HNF6/CDP factors. Importantly, BCL6 binding was preferentially associated with repression of female-biased STAT5 targets in male liver. Furthermore, BCL6 and STAT5 common targets but not BCL6 unique targets showed strong enrichment for lipid and drug metabolism. These findings provide a comprehensive, genome-wide view of the mechanisms whereby these two GH-regulated transcription factors establish and maintain sex differences affecting liver physiology and disease. The approaches used here to characterize sex-dependent STAT5 and BCL6 binding can be applied to other condition-specific regulatory factors and binding sites and their interplay with co-operative chromatin-binding factors.
Project description:Brain structure and function are sexually dimorphic. As neuroscience research has largely focused on the male brain and behavior, the female brain and, in particular, its inherent dynamics have been left underexplored. During the mammalian reproductive period, the female brain is exposed to fluctuating hormone levels over the cycles known as menstrual (in humans) or estrous (in rodents). Variation in estradiol levels has been shown to affect synaptic plasticity in the female brain, including changes in dendritic spine density systematically across the estrous cycle. Female emotionality and cognitive function vary with physiologically fluctuating sex hormone levels. However, the molecular mechanisms underlying the dynamic nature of the female brain structure and function are currently unknown. Here we show that neuronal chromatin organization in the female ventral hippocampus of mouse is dynamic and fluctuates across the estrous cycle. We find changes in chromatin organization associated with the transcriptional activity of nearby genes important for neuronal function, neurotransmission, synapse formation, and behavior. We also link these chromatin dynamics to variation in anxiety-like behavior and to fluctuations in dendritic spine and synaptic density in the ventral hippocampus. In terms of chromatin structure, within-female and between-sex variation are of similar magnitudes, emphasizing the importance of accounting for fluctuating sex-hormone levels in females in the studies of the brain epigenome and behavior. These results provide critical insights into the mechanisms underlying sex-hormone and sex-dependent variation in adult brain structure and function. The study also has implications for better understanding of sex-biased disorders such as depression and anxiety which are strongly associated with sex-hormone status in females and are twice as prevalent in women than in men. This study establishes a foundation for the development of sex-specific approaches to treat sex-biased neuropsychiatric disorders including depression and anxiety disorders.
Project description:This SuperSeries is composed of the SubSeries listed below, and is part of a larger study, where we investigated the impact of a single pulse of GH given to hypophysectomized mice on local liver chromatin accessibility [DNase hypersensitive site analysis], transcription rates [hnRNA analysis], and gene expression [quantitative PCR and RNA-Seq] determined 30, 90 or 240 min later. The STAT5-dependent but sex-independent early GH response genes Igf1 and Cish showed rapid, GH pulse-induced increases in chromatin accessibility and gene transcription, reversing the effects of hypophysectomy. Rapid increases in liver chromatin accessibility and transcriptional activity were also induced in hypophysectomized male mice for some (Ces2b, Ugt2b38) but not for other liver STAT5-dependent male-biased genes (Cyp7b1). Moreover, in pituitary-intact male mice, Igf1, Cish, Ces2b and Ugt2b38 all showed remarkable cycles of chromatin opening and closing, and associated cycles of induced gene transcription, which closely followed each endogenous pulse of liver STAT5 activity. Thus, the endogenous rhythms of male plasma GH pulsation dynamically open and then close liver chromatin at discrete, localized regulatory sites in temporal association with transcriptional activation of Igf1, Cish and a subset of STAT5-dependent male-biased genes.