Post-transcriptional mechanisms modulate the consequences of adaptive copy number variation (RNA)
Ontology highlight
ABSTRACT: Copy-number variants (CNVs) are large-scale amplifications or deletions of DNA that can drive rapid adaptive evolution and result in large-scale changes in gene expression. Whereas alterations in the copy number of one or more genes within a CNV can confer a selective advantage, other genes within a CNV can decrease fitness when their dosage is changed. Dosage compensation - in which the gene expression output from multiple gene copies is less than expected - is one means by which an organism can mitigate the fitness costs of deleterious gene amplification. Previous research has shown evidence for dosage compensation at both the transcriptional level and at the level of protein expression; however, the extent of compensation differs substantially between genes, strains, and studies. Here, we investigated sources of dosage compensation at multiple levels of gene expression regulation by defining the transcriptome, translatome and proteome of experimentally evolved yeast (Saccharomyces cerevisiae) strains containing adaptive CNVs. We quantified the gene expression output at each step and found evidence of widespread dosage compensation at the protein abundance (~47%) level. By contrast we find only limited evidence for dosage compensation at the transcriptional (~8%) and translational (~3%) level. We also find substantial divergence in the expression of unamplified genes in evolved strains that could be due to either the presence of a CNV or adaptation to the environment. Detailed analysis of 82 amplified and 411 unamplified genes with significantly discrepant relationships between RNA and protein abundances identified enrichment for upstream open reading frames (uORFs). These uORFs are enriched for binding site motifs for SSD1, an RNA binding protein that has previously been associated with tolerance of aneuploidy. Our findings suggest that, in the presence of CNVs, SSD1 may act to alter the expression of specific genes by potentiating uORF mediated translational regulation.
Project description:Copy-number variants (CNVs) are large-scale amplifications or deletions of DNA that can drive rapid adaptive evolution and result in large-scale changes in gene expression. Whereas alterations in the copy number of one or more genes within a CNV can confer a selective advantage, other genes within a CNV can decrease fitness when their dosage is changed. Dosage compensation - in which the gene expression output from multiple gene copies is less than expected - is one means by which an organism can mitigate the fitness costs of deleterious gene amplification. Previous research has shown evidence for dosage compensation at both the transcriptional level and at the level of protein expression; however, the extent of compensation differs substantially between genes, strains, and studies. Here, we investigated sources of dosage compensation at multiple levels of gene expression regulation by defining the transcriptome, translatome and proteome of experimentally evolved yeast (Saccharomyces cerevisiae) strains containing adaptive CNVs. We quantified the gene expression output at each step and found evidence of widespread dosage compensation at the protein abundance (~47%) level. By contrast we find only limited evidence for dosage compensation at the transcriptional (~8%) and translational (~3%) level. We also find substantial divergence in the expression of unamplified genes in evolved strains that could be due to either the presence of a CNV or adaptation to the environment. Detailed analysis of 82 amplified and 411 unamplified genes with significantly discrepant relationships between RNA and protein abundances identified enrichment for upstream open reading frames (uORFs). These uORFs are enriched for binding site motifs for SSD1, an RNA binding protein that has previously been associated with tolerance of aneuploidy. Our findings suggest that, in the presence of CNVs, SSD1 may act to alter the expression of specific genes by potentiating uORF mediated translational regulation.
Project description:Copy-number variants (CNVs) are large-scale amplifications or deletions of DNA that can drive rapid adaptive evolution and result in large-scale changes in gene expression. Whereas alterations in the copy number of one or more genes within a CNV can confer a selective advantage, other genes within a CNV can decrease fitness when their dosage is changed. Dosage compensation - in which the gene expression output from multiple gene copies is less than expected - is one means by which an organism can mitigate the fitness costs of deleterious gene amplification. Previous research has shown evidence for dosage compensation at both the transcriptional level and at the level of protein expression; however, the extent of compensation differs substantially between genes, strains, and studies. Here, we investigated sources of dosage compensation at multiple levels of gene expression regulation by defining the transcriptome, translatome and proteome of experimentally evolved yeast (Saccharomyces cerevisiae) strains containing adaptive CNVs.
Project description:Copy number variants (CNVs) reshape gene structure, modulate gene expression, and contribute to significant phenotypic variation. Previous studies have revealed CNV patterns in natural populations of Drosophila melanogaster and suggested that selection and mutational bias shape genomic patterns of CNV. While previous CNV studies focused on heterogeneous strains, here we established a number of second-chromosome substitution lines to uncover CNV characteristics when homozygous. The percentage of genes harboring CNVs is higher than found in previous studies. More CNVs are detected in homozygous than heterozygous substitution strains, suggesting the comparative genomic hybridization arrays underestimate CNV owing to heterozygous masking. We incorporated previous gene expression data collected from some of the same substitution lines to investigate relationships between CNV gene dosage and expression. Most genes present in CNVs show no evidence of increased or diminished transcription, and the fraction of such dosage-insensitive CNVs is greater in heterozygotes. More than 70% of the dosage-sensitive CNVs are recessive with undetectable effects on transcription in heterozygotes. A deficiency of singletons in recessive dosage-sensitive CNVs supports the hypothesis that most CNVs are subject to negative selection. On the other hand, relaxed purifying selection might account for the higher number of protein-protein interactions in dosage insensitive CNVs than in dosage-sensitive CNVs. Dosage-sensitive CNVs that are up-regulated and down-regulated coincide with copy number increases and decreases. Our results help clarify the relation between CNV dosage and gene expression in the D. melanogaster genome.
Project description:Copy number variants (CNVs) reshape gene structure, modulate gene expression, and contribute to significant phenotypic variation. Previous studies have revealed CNV patterns in natural populations of Drosophila melanogaster and suggested that selection and mutational bias shape genomic patterns of CNV. While previous CNV studies focused on heterogeneous strains, here we established a number of second-chromosome substitution lines to uncover CNV characteristics when homozygous. The percentage of genes harboring CNVs is higher than found in previous studies. More CNVs are detected in homozygous than heterozygous substitution strains, suggesting the comparative genomic hybridization arrays underestimate CNV owing to heterozygous masking. We incorporated previous gene expression data collected from some of the same substitution lines to investigate relationships between CNV gene dosage and expression. Most genes present in CNVs show no evidence of increased or diminished transcription, and the fraction of such dosage-insensitive CNVs is greater in heterozygotes. More than 70% of the dosage-sensitive CNVs are recessive with undetectable effects on transcription in heterozygotes. A deficiency of singletons in recessive dosage-sensitive CNVs supports the hypothesis that most CNVs are subject to negative selection. On the other hand, relaxed purifying selection might account for the higher number of protein-protein interactions in dosage insensitive CNVs than in dosage-sensitive CNVs. Dosage-sensitive CNVs that are up-regulated and down-regulated coincide with copy number increases and decreases. Our results help clarify the relation between CNV dosage and gene expression in the D. melanogaster genome. To determine copy number variation, the genomic DNA from five homozygous and two heterozygous second chromosome substitution lines were extracted and compared to another second chromosome substitution line. Gene expression levels can be referred to at Series GSE12191 (Lemos et al. (2008) PMID:18791071).
Project description:Copy number variations (CNVs) at 7q11.23 cause Williams-Beuren (WBS) and 7q microduplication syndromes (7Dup), two neurodevelopmental disorders with shared and opposite cognitive-behavioral phenotypes. Using patient-derived and isogenic neurons, we integrated transcriptomics, translatomics and proteomics to elucidate the molecular underpinnings of this dosage effect. We found that 7q11.23 CNVs cause opposite alterations in neuronal differentiation and neuronal excitability. Here, the 7q11.23 CNV altered proteome in iPSC differentiating neurons was measured by a fast SWATH-MS method.
Project description:Isolation of copy number variations and chromosomal duplications at high frequency in Caenorhabditis elegans suggested that this organism tolerates dosage problems. Here we addressed if this tolerance is due to a genome-wide compensation mechanism acting at the level of mRNA expression. We characterized several chromosomal duplication strains using DNA-seq and analyzed gene expression in two duplication and a fosmid integration strain using mRNA-seq. Our results show that on average, increased gene dosage leads to increased mRNA expression, pointing to a lack of genome-wide dosage compensation. Different genes within the same duplicated region show variable changes in mRNA expression, suggesting feedback regulation of individual genes. Transcriptional repression by somatic dosage compensation and germline silencing contribute to the level of mRNA increase from a large X chromosomal duplication. In sum, our results show a lack of genome-wide dosage compensation mechanism acting at the mRNA level in C. elegans and highlight the role of epigenetic and individual gene regulation contributing to the varied consequences of increased gene dosage.
Project description:Copy number variants (CNVs) represent a substantial source of genomic variation in vertebrates, but the zebrafish reference genome has no annotated CNV information. We developed a zebrafish CNV map using 80 zebrafish genomes from laboratory strains (AB, Tubingen, and WIK) and one native population, identifying 6,080 CNV elements. Overlapping or adjacent CNVs account for 14.6% of the genome, representing four times the CNV levels from other vertebrates including humans. Highest intra-specific CNV levels were observed for Tubingen, a common laboratory strain due to high fecundity. Tubingen variation likely represents higher initial population size and composite population founders initiating the laboratory strain. Extensive zebrafish CNVs, along with associated phenotypic impacts, advocates for increased usage of isogenic strains for genetic studies intended for human disease translation.
Project description:Copy number variants (CNVs) represent a substantial source of genomic variation in vertebrates, but the zebrafish reference genome has no annotated CNV information. We developed a zebrafish CNV map using 80 zebrafish genomes from laboratory strains (AB, Tubingen, and WIK) and one native population, identifying 6,080 CNV elements. Overlapping or adjacent CNVs account for 14.6% of the genome, representing four times the CNV levels from other vertebrates including humans. Highest intra-specific CNV levels were observed for Tubingen, a common laboratory strain due to high fecundity. Tubingen variation likely represents higher initial population size and composite population founders initiating the laboratory strain. Extensive zebrafish CNVs, along with associated phenotypic impacts, advocates for increased usage of isogenic strains for genetic studies intended for human disease translation.
Project description:Copy number variants (CNVs) represent a substantial source of genomic variation in vertebrates, but the zebrafish reference genome has no annotated CNV information. We developed a zebrafish CNV map using 80 zebrafish genomes from laboratory strains (AB, Tubingen, and WIK) and one native population, identifying 6,080 CNV elements. Overlapping or adjacent CNVs account for 14.6% of the genome, representing four times the CNV levels from other vertebrates including humans. Highest intra-specific CNV levels were observed for Tubingen, a common laboratory strain due to high fecundity. Tubingen variation likely represents higher initial population size and composite population founders initiating the laboratory strain. Extensive zebrafish CNVs, along with associated phenotypic impacts, advocates for increased usage of isogenic strains for genetic studies intended for human disease translation.
Project description:Submicroscopic (< 2 Mb) segmental DNA copy number changes are a recently recognized source of genetic variability between individuals. The biological consequences of copy number variants (CNVs) are largely undefined. CNVs have been detected in diverse species, including mice and humans. Published studies in mice have been limited by resolution and strain selection. We chose to study twenty-one well-characterized inbred mouse strains that are the focus of an international effort to measure, catalog, and disseminate phenotype data. We performed comparative genomic hybridization using long oligomer arrays (oligo-aCGH) to characterize CNVs in these strains. This technique increased the resolution of CNV detection by more than an order of magnitude over previous methodologies. The CNVs range in size from 21-2,002 kb. Clustering strains by CNV profile recapitulates aspects of the known ancestry of these strains. Most of the CNVs (77.5%) contain annotated genes. We demonstrate that this technique can identify copy number differences associated with known polymorphic traits. The phenotype of previously uncharacterized strains can be predicted based on their copy number at these loci. Annotation of CNVs in the mouse genome combined with sequence-based analysis provides an important resource that will help define the genetic basis of complex traits. Keywords: array comparative genomic hybridization (aCGH)