ABSTRACT: Bacterial infections and the concurrent inflammation have been associated with increased long-term cardiovascular (CV) risk. In patients receiving peritoneal dialysis (PD), bacterial peritonitis is a common occurrence, and each episode further increases late CV mortality risk. However, the underlying mechanism(s) remains to be elucidated before safe and efficient anti-inflammatory interventions can be developed. Damage-Associated Molecular Patterns (DAMPs) have been shown to contribute to the acute inflammatory response to infections, but a potential role for DAMPs in mediating long-term vascular inflammation and CV risk following infection resolution in PD, has not been investigated. We found that bacterial peritonitis in mice that resolved within 24h led to CV disease-promoting systemic and vascular immune-mediated inflammatory responses that were maintained up to 28 days. These included higher blood proportions of inflammatory leukocytes displaying increased adhesion molecule expression, higher plasma cytokines levels, and increased aortic inflammatory and atherosclerosis-associated gene expression. These effects were also observed in infected nephropathic mice and amplified in mice routinely exposed to PD fluids. A peritonitis episode resulted in elevated plasma levels of the DAMP Calprotectin, both in PD patients and mice, here the increase was maintained up to 28 days. In vitro, the ability of culture supernatants from infected cells to promote key inflammatory and atherosclerosis-associated cellular responses, such as monocyte chemotaxis, and foam cell formation, was Calprotectin-dependent. In vivo, Calprotectin blockade robustly inhibited the short and long-term peripheral and vascular consequences of peritonitis, thereby demonstrating that targeting of the DAMP Calprotectin is a promising therapeutic strategy to reduce the long-lasting vascular inflammatory aftermath of an infection, notably PD-associated peritonitis, ultimately lowering CV risk.
Project description:Bacterial infections and the concurrent inflammation have been associated with increased long-term cardiovascular (CV) risk. In patients receiving peritoneal dialysis (PD), bacterial peritonitis is a common occurrence, and each episode further increases late CV mortality risk. However, the underlying mechanism(s) remains to be elucidated before safe and efficient anti-inflammatory interventions can be developed. Damage-Associated Molecular Patterns (DAMPs) have been shown to contribute to the acute inflammatory response to infections, but a potential role for DAMPs in mediating long-term vascular inflammation and CV risk following infection resolution in PD, has not been investigated. We found that bacterial peritonitis in mice that resolved within 24h led to CV disease-promoting systemic and vascular immune-mediated inflammatory responses that were maintained up to 28 days. These included higher blood proportions of inflammatory leukocytes displaying increased adhesion molecule expression, higher plasma cytokines levels, and increased aortic inflammatory and atherosclerosis-associated gene expression. These effects were also observed in infected nephropathic mice and amplified in mice routinely exposed to PD fluids. A peritonitis episode resulted in elevated plasma levels of the DAMP Calprotectin, both in PD patients and mice, here the increase was maintained up to 28 days. In vitro, the ability of culture supernatants from infected cells to promote key inflammatory and atherosclerosis-associated cellular responses, such as monocyte chemotaxis, and foam cell formation, was Calprotectin-dependent. In vivo, Calprotectin blockade robustly inhibited the short and long-term peripheral and vascular consequences of peritonitis, thereby demonstrating that targeting of the DAMP Calprotectin is a promising therapeutic strategy to reduce the long-lasting vascular inflammatory aftermath of an infection, notably PD-associated peritonitis, ultimately lowering CV risk.
Project description:Chronic Kidney Disease (CKD) is associated with markedly increased cardiovascular (CV) morbidity and mortality. Chronic inflammation, a hallmark of both CKD and CV diseases (CVD), is believed to drive this association. Pro-inflammatory TLR agonists, Damage-Associated Molecular Patterns (DAMPs), have been found elevated in CKD patients’ plasma and suggested to promote CVD, however, confirmation of their involvement, the underlying mechanism(s), the extent to which individual DAMPs contribute to vascular pathology in CKD and the evaluation of potential therapeutic strategies, have remained largely undescribed. A multi-TLR inhibitor, soluble TLR2, abrogated chronic vascular inflammatory responses and the increased aortic atherosclerosis-associated gene expression observed in nephropathic mice, without compromising infection clearance. Mechanistically, we confirmed elevation of 4 TLR DAMPs in CKD patients’ plasma, namely Hsp70, Hyaluronic acid, HMGB-1 and Calprotectin, which displayed different abilities to promote key cellular responses associated with vascular inflammation and worsening of atherosclerosis in a TLR-dependent manner. These included loss of trans-endothelial resistance, enhanced monocyte migration, increased cytokine production, and foam cell formation by macrophages, the latter via cholesterol efflux inhibition. Calprotectin and Hsp70 most consistently affected these functions. Calprotectin was further elevated in CVD-diagnosed CKD patients and strongly correlated with the predictor of CV events CRP. In nephropathic mice, Calprotectin blockade robustly reduced vascular chronic inflammatory responses and pro-atherosclerotic gene expression. Taken together, these findings demonstrated the critical extent to which the DAMP-TLR pathway contributes to vascular inflammatory and atherogenic responses in CKD, revealed the mechanistic contribution of specific DAMPs and described two alternatives therapeutic approaches to reduce chronic vascular inflammation and lower CV pathology in CKD.
Project description:Chronic Kidney Disease (CKD) is associated with markedly increased cardiovascular (CV) morbidity and mortality. Chronic inflammation, a hallmark of both CKD and CV diseases (CVD), is believed to drive this association. Pro-inflammatory TLR agonists, Damage-Associated Molecular Patterns (DAMPs), have been found elevated in CKD patients’ plasma and suggested to promote CVD, however, confirmation of their involvement, the underlying mechanism(s), the extent to which individual DAMPs contribute to vascular pathology in CKD and the evaluation of potential therapeutic strategies, have remained largely undescribed. A multi-TLR inhibitor, soluble TLR2, abrogated chronic vascular inflammatory responses and the increased aortic atherosclerosis-associated gene expression observed in nephropathic mice, without compromising infection clearance. Mechanistically, we confirmed elevation of 4 TLR DAMPs in CKD patients’ plasma, namely Hsp70, Hyaluronic acid, HMGB-1 and Calprotectin, which displayed different abilities to promote key cellular responses associated with vascular inflammation and worsening of atherosclerosis in a TLR-dependent manner. These included loss of trans-endothelial resistance, enhanced monocyte migration, increased cytokine production, and foam cell formation by macrophages, the latter via cholesterol efflux inhibition. Calprotectin and Hsp70 most consistently affected these functions. Calprotectin was further elevated in CVD-diagnosed CKD patients and strongly correlated with the predictor of CV events CRP. In nephropathic mice, Calprotectin blockade robustly reduced vascular chronic inflammatory responses and pro-atherosclerotic gene expression. Taken together, these findings demonstrated the critical extent to which the DAMP-TLR pathway contributes to vascular inflammatory and atherogenic responses in CKD, revealed the mechanistic contribution of specific DAMPs and described two alternatives therapeutic approaches to reduce chronic vascular inflammation and lower CV pathology in CKD.
Project description:Chronic Kidney Disease (CKD) is associated with markedly increased cardiovascular (CV) morbidity and mortality. Chronic inflammation, a hallmark of both CKD and CV diseases (CVD), is believed to drive this association. Pro-inflammatory TLR agonists, Damage-Associated Molecular Patterns (DAMPs), have been found elevated in CKD patients’ plasma and suggested to promote CVD, however, confirmation of their involvement, the underlying mechanism(s), the extent to which individual DAMPs contribute to vascular pathology in CKD and the evaluation of potential therapeutic strategies, have remained largely undescribed. A multi-TLR inhibitor, soluble TLR2, abrogated chronic vascular inflammatory responses and the increased aortic atherosclerosis-associated gene expression observed in nephropathic mice, without compromising infection clearance. Mechanistically, we confirmed elevation of 4 TLR DAMPs in CKD patients’ plasma, namely Hsp70, Hyaluronic acid, HMGB-1 and Calprotectin, which displayed different abilities to promote key cellular responses associated with vascular inflammation and worsening of atherosclerosis in a TLR-dependent manner. These included loss of trans-endothelial resistance, enhanced monocyte migration, increased cytokine production, and foam cell formation by macrophages, the latter via cholesterol efflux inhibition. Calprotectin and Hsp70 most consistently affected these functions. Calprotectin was further elevated in CVD-diagnosed CKD patients and strongly correlated with the predictor of CV events CRP. In nephropathic mice, Calprotectin blockade robustly reduced vascular chronic inflammatory responses and pro-atherosclerotic gene expression. Taken together, these findings demonstrated the critical extent to which the DAMP-TLR pathway contributes to vascular inflammatory and atherogenic responses in CKD, revealed the mechanistic contribution of specific DAMPs and described two alternatives therapeutic approaches to reduce chronic vascular inflammation and lower CV pathology in CKD.
Project description:Dead cell-derived molecules, typically called as damage-accociated molecular patterns (DAMPs), have been shown to evoke inflammatory responses. Accordingly, it becomes increasingly clear that DAMPs play important role in pathogenesis of multiple diseases including inflammatory diseases and cancer. To get a comprihensive view of DAMP-mediated inflammatory responses, we perfomed microarray analysis on murine macrophages treated by dead cell-derived molecules.
Project description:Traditional anti-cancer therapies induce tumor cell death and subsequent release of Damage Associated Molecular Patterns (DAMPs) that activate the innate inflammatory response. Paradoxically, after treatment macrophages often adopt a pro-wound healing, rather than pro-inflammatory, phenotype and contribute to cancer progression. We found that in areas proximal to DAMP release, tumor cells upregulate the expression of Pros1. Tumor-secreted Pros1 binds to the macrophage Mer receptor, effectively limiting responsiveness to DAMPs by preventing Toll Like Receptor (TLR) signal transduction. Pharmacologically inhibiting PTP1b signaling downstream of Mer rescues the pro-inflammatory response even in the presence of Pros1. Combining PTP inhibition with traditional therapeutics, like chemo- or radiotherapy, rescues the innate immune response to DAMPs, increases immune infiltration, and causes 40-90% reductions in tumor growth in multiple treatment refractory preclinical models. Our findings suggest a novel use for PTP1b inhibitors as a tumor agnostic means of improving the efficacy of some of the most widely used anti-cancer therapeutic agents.
Project description:Autoimmune diseases, like psoriasis or arthritis, show a patchy distribution of inflammation despite systemic dysregulation of adaptive immunity. Thus, additional tissue-derived signals like Danger-Associated Molecular Pattern molecules (DAMPs) are indispensable for manifestation of local inflammation. S100A8/100A9-complexes are the most abundant DAMPs in many autoimmune diseases. However, regulatory mechanisms locally restricting DAMP-activities are barely understood. We now unravel for the first time a novel mechanism of auto-inhibition in mice and man restricting S100-DAMP activity to local sites of inflammation. Combining protease degradation, pull-down assays, mass spectrometry and targeted mutations we identified specific peptide sequences within the second calcium-binding EF-hands triggering TLR4/MD2-dependent inflammation. These binding sites are free when S100A8/S100A9-heterodimers are released at sites of inflammation. Subsequently, S100A8/S100A9-activities are locally restricted by calcium-induced (S100A8/S100A9)2-tetramer formation now hiding the TLR4/MD2-binding site within the tetramer interphase thus preventing undesirable systemic effects. Loss of this auto-inhibitory mechanism in vivo results in TNFa-driven fatal inflammation as shown by lack of tetramer formation crossing S100A9-/- mice with two independent TNFa-transgene mouse strains. Since S100A8/S100A9 is the most abundant DAMP in many inflammatory diseases, specifically blocking of the TLR4-binding site of active S100-dimers represents an innovative approach for local suppression of inflammatory diseases avoiding systemic side effects.
Project description:Danger-associated molecular patterns (DAMPs) derived from damaged or dying cells not only elicit inflammation but also potentiate antitumor immune responses. Here, we show that treatment of breast cancer cells with the antitumor agent Topotecan, an inhibitor of topoisomerase I, induces DAMP secretion that triggers dendritic cell activation and cytokine production.
Project description:In this RNA sequencing study, the primary objectives were to explore the intricate interplay between the STING pathway and ICD-associated DAMPs in the context of treatment with cGAMP nanoparticle and Dox. The research delved deep into the transcriptomic alterations in BMDCs when exposed to cGAMPnps and conditioned medium from Dox-treated 4T1 breast cancer cells. By analyzing these shifts in gene expression and conducting a gene ontology analysis, the study sought to understand the inflammatory pathways and other gene clusters influenced by these treatments. Ultimately, this insight aims to inform the development of STING-mediated immunotherapies by identifying potential DAMP targets.
Project description:Macrophages are exquisitely capable of sensing danger-associated molecular patterns (DAMPs) and orchestrating inflammatory response during tissue injury. Nonalcoholic steatohepatitis (NASH) represents an advanced stage of metabolic fatty liver disease that increases the risk for cirrhosis and liver cancer. Pathogenic mechanisms of NASH center on hepatocyte injury and the ensuing immune response within the liver microenvironment. However, the nature of DAMPs released by injured hepatocytes and how they shape the liver immune milieu remain largely unknown. Here we show that lipid droplets (LDs) released by injured fatty hepatocytes provide a potent signal that triggers monocyte infiltration and maturation into Trem2+ macrophages, recently described as NASH-associated macrophages (NAMs) or lipid- associated macrophages. LD treatment exacerbated liver injury in mice with diet-induced NASH. We identified Membrane spanning 4-domains a7 (Ms4a7) as a NAM-specific pathogenic factor that was strongly induced in mouse and human NASH. Ms4a7 inactivation ameliorated key aspects of diet-induced NASH pathologies in mice. At the mechanistic level, Ms4a7 physically interacts with NLR family pyrin domain containing 3 (NLRP3) and is required for endosomal NLRP3 inflammasome activation. These findings illustrate a crucial role of Ms4a7 in driving pro-inflammatory signaling in NASH liver. Surprisingly, LD treatments attenuated Ms4a7 expression and NLRP3 inflammasome activation in cultured macrophages. As such, LDs serve as a DAMP signal that balances the induction of Trem2+ macrophages and NLRP3 inflammasome activation in NASH liver