Other

Dataset Information

0

Yeast EndoG prevents genome instability by degrading extranuclear DNA species


ABSTRACT: In metazoans mitochondrial DNA (mtDNA) or retrotransposon cDNA released to cytoplasm are degraded by nucleases to prevent sterile inflammation. It remains unknown whether degradation of these DNA also prevents nuclear genome instability. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. In non-dividing stationary phase cells, Pol4-mediated non-homologous end-joining increases, resulting in frequent insertions of 1-3 nucleotides, and insertions of mtDNA (NUMTs) or retrotransposon cDNA. Yeast EndoG (Nuc1) nuclease limits insertion of cDNA and transfer of very long mtDNA (>10 kb) to the nucleus, where it forms unstable circles, while promoting the formation of short NUMTs (~45-200 bp). Nuc1 also regulates transfer of extranuclear DNA to nucleus in aging or meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating extranuclear DNA preserve genome stability.

ORGANISM(S): Saccharomyces cerevisiae

PROVIDER: GSE246469 | GEO | 2023/12/20

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2015-04-23 | E-GEOD-67371 | biostudies-arrayexpress
2014-06-19 | E-GEOD-56676 | biostudies-arrayexpress
2015-04-23 | GSE67371 | GEO
2011-11-22 | E-GEOD-33831 | biostudies-arrayexpress
2012-05-17 | E-GEOD-29550 | biostudies-arrayexpress
2024-09-24 | GSE261865 | GEO
2024-09-24 | GSE261864 | GEO
2024-09-24 | GSE261861 | GEO
2024-09-24 | GSE248512 | GEO
2024-09-24 | GSE248511 | GEO