Project description:Directional RNAseq analyses was undertaken in Klebsiella pneumoniae Ecl8 and isogenic mutants Ecl8delta ramA and Ecl8delta ramR to determine the RamA regulon. All samples were grown in Luria Bertani broth until OD600 approx 0.6 prior to RNA extraction. Differential expression was determined using DEseq upon pairwise comparisons of Ecl8 vs Ecl8delta ramA, Ecl8deltaramA vs Ecl8deltaramR, Ecl8 vs Ecl8deltaramR.This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:Antibiotic use can lead to expansion of multi-drug resistant pathobionts within the gut microbiome that can cause life-threatening infections. Selective alternatives to conventional antibiotics are in dire need. Here, we describe a Klebsiella PhageBank that enables the rapid design of antimicrobial bacteriophage cocktails to treat multi-drug resistant Klebsiella pneumoniae. Using a transposon library in carbapenem-resistant K. pneumoniae, we identified host factors required for phage infection in major Klebsiella phage families. Leveraging the diversity of the PhageBank and experimental evolution strategies, we formulated combinations of phages that minimize the occurrence of phage resistance in vitro. Optimized bacteriophage cocktails selectively suppressed the burden of multi-drug resistant K. pneumoniae in the mouse gut microbiome and drove bacterial populations to lose key virulence factors that act as phage receptors. Further, phage-mediated diversification of bacterial populations in the gut enabled co-evolution of phage variants with higher virulence and a broader host range. Altogether, the Klebsiella PhageBank represents a roadmap for both phage researchers and clinicians to enable phage therapy against a critical multidrug-resistant human pathogen.
Project description:Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually for the last few years. Although studies on mechanisms of polymyxin are expanding, system-wide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapt to colistin (polymyxin E) pressure, we carried out proteomic analysis of Klebsiella pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in Klebsiella pneumoniae involving several pathways, including (i) gluconeogenesis and TCA cycle; (ii) arginine biosynthesis; (iii) porphyrin and chlorophyll metabolism; and (iv) enterobactin biosynthesis. Interestingly, decreased abundance of class A β-lactamases including TEM, SHV-11, SHV-4 were observed in cells treated with colistin. Moreover, we also present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant Klebsiella pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of Klebsiella pneumoniae ATCC BAA 2146, showed missense mutation in crrB. The crrB mutant Ci, which displayed lipid A modification with 4-amino-4-deoxy-L-arabinose (L-Ara4N) and palmitoylation, showed striking increases of CrrAB, PmrAB, PhoPQ, ArnBCADT and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediate colistin resistance, which may further offer valuable information to manage polymyxin resistance.
Project description:The study aimed to characterize plasmids mediating carbepenem resistance in Klebsiella pneumoniae in Pretoria, South Africa. We analysed 56 K. pneumoniae isolates collected from academic hospital around Pretoria. Based on phenotypic and molecular results of these isolates, 6 representative isolates were chosen for further analysis using long reads sequencing platform. We observed multidrug resistant phenotype in all these isolates, including resistance to aminoglycosides, tetracycline, phenicol, fosfomycin, floroquinolones, and beta-lactams antibiotics. The blaOXA-48/181 and blaNDM-1/7 were manily the plasmid-mediated carbapenemases responsible for carbapenem resistance in the K. pneumoniae isolates in these academic hospitals. These carbapenemase genes were mainly associated with plasmid replicon groups IncF, IncL/M, IncA/C, and IncX3. This study showed plasmid-mediated carbapenemase spread of blaOXA and blaNDM genes mediated by conjugative plasmids in Pretoria hospitals.
Project description:Klebsiella pneumoniae is an arising threat to human health. However, host immune responses in response to this bacterium remain to be elucidated. The goal of this study was to identify the dominant host immune responses associated with Klebsiella pneumoniae pulmonary infection. Pulmonary mRNA profiles of 6-8-weeks-old BALB/c mice infected with/without Klebsiella pneumoniae were generated by deep sequencing using Illumina Novaseq 6000. qRT–PCR validation was performed using SYBR Green assays. Using KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, we identified several immune associated pathways, including complement and coagulation cascades, Toll-like receptor signaling pathway, Rap1 signaling pathway, chemokine signaling pathway, TNF signaling pathway, phagosome and NOD-like receptor signaling pathway, were involved in Klebsiella pneumoniae pulmonary infection. Using ICEPOP (Immune CEll POPulation) analysis, we found that several cell types were involved in the host immune response to Klebsiella pneumoniae pulmonary infection, including dendritic cells, macrophages, monocytes, NK (natural killer) cells, stromal cells. Further, IL-17 chemokines were significantly increased during Klebsiella pneumoniae infection. This study provided evidence for further studying the pathogenic mechanism of Klebsiella pneumoniae pneumonia infection.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain AJ218.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain KPC2.