Abundant mRNA m1A modification in dinoflagellates: a new layer of gene regulation [Nanopore]
Ontology highlight
ABSTRACT: Dinoflagellates, a class of unicellular eukaryotic phytoplankton, exhibit minimal transcriptional regulation, representing a unique model for exploring gene expression. The biosynthesis, distribution, regulation, and function of mRNA N1-methyladenosine (m1A) remain controversial due to its limited presence in typical eukaryotic mRNA. This study found that m1A, rather than N6-methyladenosine (m6A), is the most prevalent internal mRNA modification in various dinoflagellate species, with an asymmetrically distribution along mature transcripts. In Amphidinium carterae, we identified 6549 m1A sites characterized by a non-tRNA T-loop-like sequence motif within the transcripts of 3196 genes, many involved in regulating carbon and nitrogen metabolism. With enrichment within 3'UTR, dinoflagellate mRNA m1A exhibits negative correlation with translation efficiency. Notably, nitrogen depletion led to a significant decrease in mRNA m1A. Furthermore, our analysis revealed that distinctive patterns of m1A modification influence the expression of metabolism-related genes through translation control. Thus, this study provides a comprehensive map of m1A in dinoflagellate mRNA, highlighting its crucial role as a post-transcriptional regulatory layer and enhancing the understanding of mRNA m1A modification.
Project description:Dinoflagellates, a class of unicellular eukaryotic phytoplankton, exhibit minimal transcriptional regulation, representing a unique model for exploring gene expression. The biosynthesis, distribution, regulation, and function of mRNA N1-methyladenosine (m1A) remain controversial due to its limited presence in typical eukaryotic mRNA. This study found that m1A, rather than N6-methyladenosine (m6A), is the most prevalent internal mRNA modification in various dinoflagellate species, with an asymmetrically distribution along mature transcripts. In Amphidinium carterae, we identified 6549 m1A sites characterized by a non-tRNA T-loop-like sequence motif within the transcripts of 3196 genes, many involved in regulating carbon and nitrogen metabolism. With enrichment within 3'UTR, dinoflagellate mRNA m1A exhibits negative correlation with translation efficiency. Notably, nitrogen depletion led to a significant decrease in mRNA m1A. Furthermore, our analysis revealed that distinctive patterns of m1A modification influence the expression of metabolism-related genes through translation control. Thus, this study provides a comprehensive map of m1A in dinoflagellate mRNA, highlighting its crucial role as a post-transcriptional regulatory layer and enhancing the understanding of mRNA m1A modification.
Project description:Dinoflagellates, a class of unicellular eukaryotic phytoplankton, exhibit minimal transcriptional regulation, representing a unique model for exploring gene expression. The biosynthesis, distribution, regulation, and function of mRNA N1-methyladenosine (m1A) remain controversial due to its limited presence in typical eukaryotic mRNA. This study found that m1A, rather than N6-methyladenosine (m6A), is the most prevalent internal mRNA modification in various dinoflagellate species, with an asymmetrically distribution along mature transcripts. In Amphidinium carterae, we identified 6549 m1A sites characterized by a non-tRNA T-loop-like sequence motif within the transcripts of 3196 genes, many involved in regulating carbon and nitrogen metabolism. With enrichment within 3'UTR, dinoflagellate mRNA m1A exhibits negative correlation with translation efficiency. Notably, nitrogen depletion led to a significant decrease in mRNA m1A. Furthermore, our analysis revealed that distinctive patterns of m1A modification influence the expression of metabolism-related genes through translation control. Thus, this study provides a comprehensive map of m1A in dinoflagellate mRNA, highlighting its crucial role as a post-transcriptional regulatory layer and enhancing the understanding of mRNA m1A modification.
Project description:Dinoflagellate chromosomes are extraordinary, as their organization is independent of architectural nucleosomes unlike typical eukaryotes and shows a cholesteric liquid crystal state. 5-hydroxymethyluridine (5hmU) is present at unusually high levels and its function remains an enigma in dinoflagellates chromosomal DNA for several decades. Here, we demonstrate that 5hmU contents vary among different dinoflagellates and are generated through thymidine hydroxylation. Importantly, we identified the enzyme, which is a putative dinoflagellate TET/JBP homologue, catalyzing 5hmU production using both in vivo and in vitro biochemical assays. Based on the near-chromosomal level genome assembly of dinoflagellate Amphidinium carterae, we depicted a comprehensive 5hmU landscape and found that 5hmU loci are significantly enriched in repeat elements. Moreover, inhibition of 5hmU via dioxygenase inhibitor leads to transcriptional activation of 5hmU-marked transposable elements (TEs), implying that 5hmU appears to serve as an epigenetic mark for silencing transposon. Together, our results revealed the biogenesis, genome-wide landscape and molecular function of dinoflagellate 5hmU, providing mechanistic insight into the function of this enigmatic DNA mark.
Project description:Dinoflagellates are phytoplanktonic organisms found in both freshwater and marine habitats. They are often studied because related to harmful algal blooms responsible for impacts on ecosystem functioning, economic damages for aquaculture and fishery industries and/or deleterious impacts for human health. In addition they are also known to produce bioactive compounds, such as for the treatment of cancer or beneficial effects for the treatment of Alzheimer’s disease. The dinoflagellate Amphidinium sp. is a cosmopolitan dinoflagellate species known to produce both cytotoxic and beneficial compounds. However, several studies reported that environmental changes (e.g. nutrient starvation, UV radiation and ocean acidification) may alter this production. The aim of this study was to sequence the full transcriptome of the dinoflagellate Amphidinium carterae in both nitrogen- starved and -repleted culturing conditions (1) to evaluated its response to nitrogen starvation, (2) to look for possible polyketide synthases (PKSs), involved in the synthesis of various compounds, in this studied clone, (3) if present, to evaluate if nutrient starvation can influence PKS activity, (4) to test strain cytotoxicity on human cells and (5) to look for other possible enzymes/proteins of biotechnological interest.
Project description:N1-methyladenosine (m1A) is an abundant post-transcriptional RNA modification, yet little is known about its prevalence, topology and dynamics in mRNA. Here, we show that m1A is abundant in human mRNA, with an m1A/A ratio of ~0.02%. We develop m1A-ID-Seq, based on m1A immunoprecipitation and the inherent property of m1A to stall reverse transcription, for the transcriptome-wide m1A analysis. m1A-ID-Seq identifies 901 m1A peaks (from 583 genes) in mRNA and ncRNA, and reveals a prominent feature of enrichment in the 5â-untranslated region of mRNA transcripts, distinct from that of N6-methyladenosine, the most abundant internal mammalian mRNA modification. m1A in mRNA is also reversible by ALKBH3, a known DNA/RNA demethylase. Lastly, m1A responds dynamically to stimuli and hundreds of stress-induced m1A sites are identified. Collectively, our approaches allow comprehensive analysis of m1A methylation and provide an important tool for functional studies of potential epigenetic regulation via the reversible and dynamic m1A methylation. Identification of m1A sites in human embryonic kidney cells. Comparisons of m1A profiles of wild type HEK293T with ALKBH3 knock out cell line reveals the ALKBH3 specific sites. Stress inducible m1A sites are also identified by comparing the profiles of untreated cells with stress treated cells.
Project description:N1-Methyladenosine (m1A) is a prevalent post-transcriptional RNA modification, yet little is known about its abundance, topol- ogy and dynamics in mRNA. Here, we show that m1A is prevalent in Homo sapiens mRNA, which shows an m1A/A ratio of ~0.02%. We develop the m1A-ID-seq technique, based on m1A immunoprecipitation and the inherent ability of m1A to stall reverse tran- scription, as a means for transcriptome-wide m1A profiling. m1A-ID-seq identifies 901 m1A peaks (from 600 genes) in mRNA and noncoding RNA and reveals a prominent feature, enrichment in the 5' untranslated region of mRNA transcripts, that is dis- tinct from the pattern for N6-methyladenosine, the most abundant internal mammalian mRNA modification. Moreover, m1A in mRNA is reversible by ALKBH3, a known DNA/RNA demethylase. Lastly, we show that m1A methylation responds dynamically to stimuli, and we identify hundreds of stress-induced m1A sites. Collectively, our approaches allow comprehensive analysis of m1A modification and provide tools for functional studies of potential epigenetic regulation via the reversible and dynamic m1A methylation.
Project description:N1-methyladenosine (m1A) is one of messenger RNA modification in eukaryotes, but the potential roles of m1A methylated mRNA in trophoblast upon hypoxia remain elusive.
Project description:N1-methyladenosine (m1A) was recently identified as a new mRNA modification based on its mapping to the 5’UTRs of thousands of mRNAs with an m1A-binding antibody. More recent studies have questioned the prevalence of m1A. To address this discrepancy, we mapped m1A using ultra-deep RNA-Seq datasets based on m1A-induced misincorporations during reverse transcription. Using this approach, we find m1A only in the mitochondrial MT-ND5 transcript. In contrast, m1A mapping using an m1A-binding antibody showed binding to transcription start nucleotides in mRNA 5’UTRs. Biochemical measurements indicate that m1A is not present at these sites. Instead, we find that the m1A antibody exhibits m1A-independent binding to mRNA cap structures. Our data demonstrate that high-stoichiometry m1A sites are rare in the transcriptome and that previous mapping of m1A to mRNA 5’UTRs reflect an unintended binding to mRNA caps.
Project description:RNA N1-methyladenosine methylation (m1A) modification is critical in regulating mRNA translation and thus protein synthesis, but the role of m1A modification in the occurrence, progression, and immunotherapy of head and neck squamous cell cancer (HNSCC) remains largely unknown. In Tgfbr1/Pten 2cKO mice, we found that the spontaneous neoplastic transformation of oral mucosa is accompanied by elevated levels of m1A modification. Analysis of m1A-associated genes identified TRMT61A as the key m1A writer associated with cancer progression, and poor prognosis. Mechanically, TRMT61A-induced tRNA-m1A modification promotes MYC protein synthesis and subsequent programmed death-ligand 1 (PD-L1) expression. In Tgfbr1/Pten 2cKO mice, RNA-m1A modification levels are also elevated in tumors that developed resistance to oncolytic herpes simplex virus (oHSV) treatment. Therapeutic inhibition of m1A modification sustains oncolytic virus-induced antitumor immunity and reduces tumor growth, providing a promising strategy for alleviating resistance to oHSV therapy. These findings indicate that m1A inhibition can prevent immune escape after oHSV therapy by reducing the expression of PD-L1. Our results provide a mutually reinforcing strategy for clinical combination immunotherapy.