Single-cell RNA sequencing for heart failure with a history of coronary heart disease and hypertension
Ontology highlight
ABSTRACT: Hyperlipidaemia and hypertension might play a role in cardiac fibrosis, in which a heterogeneous population of fibroblasts seems important. The study aimed to explore the mechanism of fibroblasts in cardiac fibrosis during hyperlipidaemia.
Project description:Hyperlipidemia and hypertension might play a role in cardiac fibrosis, in which a heterogeneous population of fibroblasts seems important. However, it is unknown whether CD34+ cells are involved in the pathogenesis of cardiac fibrosis. This study aimed to investigate the mechanism of CD34+ cell differentiation in cardiac fibrosis during hyperlipidemia. By analyzing the transcriptomes of single cells from the Cd34-CreERT2;R26-tdTomato&ApoE-/- heart, we also demonstrated the dynamics of cell landscape during cardiac fibrosis in the hypertrophic heart with hyperlipidemia.
Project description:Tissue fibrosis and organ dysfunction are hallmarks of age-related diseases including heart failure, but it remains elusive whether there is a common pathway to induce both events. Through single-cell RNA-seq, spatial transcriptomics, and genetic perturbation, we elucidate that high-temperature requirement A serine peptidase 3 (Htra3) is a critical regulator of cardiac fibrosis and heart failure by maintaining the identity of quiescent cardiac fibroblasts through degrading transforming growth factor-β (TGF-β). Pressure overload downregulates expression of Htra3 in cardiac fibroblasts and activated TGF-β signaling, which induces not only cardiac fibrosis but also heart failure through DNA damage accumulation and secretory phenotype induction in failing cardiomyocytes. Overexpression of Htra3 in the heart inhibits TGF-β signaling and ameliorates cardiac dysfunction after pressure overload. Htra3-regulated induction of spatio-temporal cardiac fibrosis and cardiomyocyte secretory phenotype are observed specifically in infarct regions after myocardial infarction. Integrative analyses of single-cardiomyocyte transcriptome and plasma proteome in human reveal that IGFBP7, which is a cytokine downstream of TGF-β and secreted from failing cardiomyocytes, is the most predictable marker of advanced heart failure. These findings highlight the roles of cardiac fibroblasts in regulating cardiomyocyte homeostasis and cardiac fibrosis through the Htra3-TGF-β-IGFBP7 pathway, which would be a therapeutic target for heart failure.
Project description:Fibrosis is important pathogenesis in heart failure with preserved ejection fraction (HFpEF). We previously reported that the overexpression of cardiac transcription factors, Mef2c/Gata4/Tbx5/Hand2 (MGTH) could directly reprogram cardiac fibroblasts (CFs) into induced CMs (iCMs) and reduce fibrosis. Here we show that in vivo cardiac reprogramming generated iCMs from resident CFs, improved cardiac function, and reversed fibrosis in HFpEF model using a novel transgenic mouse system. Visium revealed spatial information on changes in gene expression in HFpEF.
Project description:Fibrosis is important pathogenesis in heart failure with preserved ejection fraction (HFpEF). We previously reported that the overexpression of cardiac transcription factors, Mef2c/Gata4/Tbx5/Hand2 (MGTH) could directly reprogram cardiac fibroblasts (CFs) into induced CMs (iCMs) and reduce fibrosis. Here we show that in vivo cardiac reprogramming generated iCMs from resident CFs, improved cardiac function, and reversed fibrosis in HFpEF model using a novel transgenic mouse system. RNA-seq revealed that the MGTH activated the cardiac program and concomitantly suppressed fibroblast and inflammatory signatures. Thus, cardiac reprogramming improves HFpEF via myocardial regeneration and anti-fibrosis.
Project description:Myocardial fibrosis leads to cardiac dysfunction and arrhythmias in heart failure with preserved ejection fraction (HFpEF), but the underlying mechanisms remain poorly understood. Here, RNA sequencing identifies Forkhead Box1 (FoxO1) signaling as abnormal in HFpEF hearts. Genetic suppression of FoxO1 alters the intercellular communication between cardiomyocytes and fibroblasts, alleviates abnormal diastolic relaxation, and reduces arrhythmias. Targeted downregulation of FoxO1 in activated fibroblasts reduces cardiac fibrosis, blunts arrhythmogenesis and improves diastolic function in HFpEF. These results not only implicate FoxO1 in arrhythmogenesis and lusitropy but also demonstrate that pro-fibrotic cardiomyocyte-fibroblast communication can be corrected, constituting a novel therapeutic strategy for HFpEF.
Project description:Myocardial fibrosis leads to cardiac dysfunction and arrhythmias in heart failure with preserved ejection fraction (HFpEF), but the underlying mechanisms remain poorly understood. Here, RNA sequencing identifies Forkhead Box1 (FoxO1) signaling as abnormal in HFpEF hearts. Genetic suppression of FoxO1 alters the intercellular communication between cardiomyocytes and fibroblasts, alleviates abnormal diastolic relaxation, and reduces arrhythmias. Targeted downregulation of FoxO1 in activated fibroblasts reduces cardiac fibrosis, blunts arrhythmogenesis and improves diastolic function in HFpEF. These results not only implicate FoxO1 in arrhythmogenesis and lusitropy but also demonstrate that pro-fibrotic cardiomyocyte-fibroblast communication can be corrected, constituting a novel therapeutic strategy for HFpEF.
Project description:Fibrosis is important pathogenesis in heart failure with preserved ejection fraction (HFpEF). We previously reported that the overexpression of cardiac transcription factors, Mef2c/Gata4/Tbx5/Hand2 (MGTH) could directly reprogram cardiac fibroblasts (CFs) into induced CMs (iCMs) and reduce fibrosis. Here we show that in vivo cardiac reprogramming generated iCMs from resident CFs, improved cardiac function, and reversed fibrosis in HFpEF model using a novel transgenic mouse system. scRNA-seq of non-cardiomyocytes revealed that cardiac reprogramming suppressed fibroblastic gene expression via conversion of profibrotic profile to a quiescent state. Thus, in vivo cardiac reprogramming may be a promising approach for HFpEF.
Project description:Myocardial fibrosis leads to cardiac dysfunction and arrhythmias in heart failure with preserved ejection fraction (HFpEF), but the underlying mechanisms remain poorly understood. Here, RNA sequencing identifies Forkhead Box1 (FoxO1) signaling as abnormal in HFpEF hearts. Genetic suppression of FoxO1 alters the intercellular communication between cardiomyocytes and fibroblasts, alleviates abnormal diastolic relaxation, and reduces arrhythmias. Targeted downregulation of FoxO1 in activated fibroblasts reduces cardiac fibrosis, blunts arrhythmogenesis and improves diastolic function in HFpEF. These results not only implicate FoxO1 in arrhythmogenesis and lusitropy but also demonstrate that pro-fibrotic cardiomyocyte-fibroblast communication can be corrected, constituting a novel therapeutic strategy for HFpEF.