FoxA1/2-dependent epigenomic reprogramming drives lineage switching in lung adenocarcinoma [HiChIP]
Ontology highlight
ABSTRACT: The ability of cancer cells to alter their identity is essential for tumor survival and progression. Loss of the pulmonary lineage specifier NKX2-1 within KRAS-driven lung adenocarcinoma (LUAD) enhances tumor progression and results in a pulmonary-to-gastric lineage switch that is dependent upon the activity of pioneer factors FoxA1 and FoxA2; however, the underlying mechanism remains largely unknown. Here, we show that FoxA1/2 reprogram the epigenetic landscape of NKX2-1-negative LUAD to facilitate a gastric differentiation program. Using sequential recombination models, we find that FoxA1/2 are required for demethylation of gastric-defining genes after Nkx2-1 deletion. FoxA1 colocalizes with TET3, an enzyme that mediates DNA demethylation, in NKX2-1-negative tumors. Deletion of Foxa1/2 results in loss of TET3 occupancy at key gastric marker genes, indicating that FoxA1/2 recruit TET3 to lineage-specific sites. H3K27ac ChIP-seq and HiChIP show that FoxA1/2 also control the activity of enhancers and promoters as well as their 3D interactions at gastric target genes following NKX2-1 loss. Furthermore, oncogenic KRAS is required for the FoxA1/2-dependent epigenetic reprogramming in NKX2-1-negative LUAD. This work demonstrates the role of FoxA1/2 in rewiring the methylation and histone landscape and cis-regulatory dynamics of NKX2-1-negative LUAD to drive cancer cell lineage switching.
Project description:The ability of cancer cells to alter their identity is essential for tumor survival and progression. Loss of the pulmonary lineage specifier NKX2-1 within KRAS-driven lung adenocarcinoma (LUAD) enhances tumor progression and results in a pulmonary-to-gastric lineage switch that is dependent upon the activity of pioneer factors FoxA1 and FoxA2; however, the underlying mechanism remains largely unknown. Here, we show that FoxA1/2 reprogram the epigenetic landscape of NKX2-1-negative LUAD to facilitate a gastric differentiation program. Using sequential recombination models, we find that FoxA1/2 are required for demethylation of gastric-defining genes after Nkx2-1 deletion. FoxA1 colocalizes with TET3, an enzyme that mediates DNA demethylation, in NKX2-1-negative tumors. Deletion of Foxa1/2 results in loss of TET3 occupancy at key gastric marker genes, indicating that FoxA1/2 recruit TET3 to lineage-specific sites. H3K27ac ChIP-seq and HiChIP show that FoxA1/2 also control the activity of enhancers and promoters as well as their 3D interactions at gastric target genes following NKX2-1 loss. Furthermore, oncogenic KRAS is required for the FoxA1/2-dependent epigenetic reprogramming in NKX2-1-negative LUAD. This work demonstrates the role of FoxA1/2 in rewiring the methylation and histone landscape and cis-regulatory dynamics of NKX2-1-negative LUAD to drive cancer cell lineage switching.
Project description:The ability of cancer cells to alter their identity is essential for tumor survival and progression. Loss of the pulmonary lineage specifier NKX2-1 within KRAS-driven lung adenocarcinoma (LUAD) enhances tumor progression and results in a pulmonary-to-gastric lineage switch that is dependent upon the activity of pioneer factors FoxA1 and FoxA2; however, the underlying mechanism remains largely unknown. Here, we show that FoxA1/2 reprogram the epigenetic landscape of NKX2-1-negative LUAD to facilitate a gastric differentiation program. Using sequential recombination models, we find that FoxA1/2 are required for demethylation of gastric-defining genes after Nkx2-1 deletion. FoxA1 colocalizes with TET3, an enzyme that mediates DNA demethylation, in NKX2-1-negative tumors. Deletion of Foxa1/2 results in loss of TET3 occupancy at key gastric marker genes, indicating that FoxA1/2 recruit TET3 to lineage-specific sites. H3K27ac ChIP-seq and HiChIP show that FoxA1/2 also control the activity of enhancers and promoters as well as their 3D interactions at gastric target genes following NKX2-1 loss. Furthermore, oncogenic KRAS is required for the FoxA1/2-dependent epigenetic reprogramming in NKX2-1-negative LUAD. This work demonstrates the role of FoxA1/2 in rewiring the methylation and histone landscape and cis-regulatory dynamics of NKX2-1-negative LUAD to drive cancer cell lineage switching.
Project description:The ability of cancer cells to alter their identity is essential for tumor survival and progression. Loss of the pulmonary lineage specifier NKX2-1 within KRAS-driven lung adenocarcinoma (LUAD) enhances tumor progression and results in a pulmonary-to-gastric lineage switch that is dependent upon the activity of pioneer factors FoxA1 and FoxA2; however, the underlying mechanism remains largely unknown. Here, we show that FoxA1/2 reprogram the epigenetic landscape of NKX2-1-negative LUAD to facilitate a gastric differentiation program. Using sequential recombination models, we find that FoxA1/2 are required for demethylation of gastric-defining genes after Nkx2-1 deletion. FoxA1 colocalizes with TET3, an enzyme that mediates DNA demethylation, in NKX2-1-negative tumors. Deletion of Foxa1/2 results in loss of TET3 occupancy at key gastric marker genes, indicating that FoxA1/2 recruit TET3 to lineage-specific sites. H3K27ac ChIP-seq and HiChIP show that FoxA1/2 also control the activity of enhancers and promoters as well as their 3D interactions at gastric target genes following NKX2-1 loss. Furthermore, oncogenic KRAS is required for the FoxA1/2-dependent epigenetic reprogramming in NKX2-1-negative LUAD. This work demonstrates the role of FoxA1/2 in rewiring the methylation and histone landscape and cis-regulatory dynamics of NKX2-1-negative LUAD to drive cancer cell lineage switching.
Project description:Changes in cellular identity (also known as histologic transformation or lineage plasticity) can drive malignant progression and resistance to therapy in multiple types of cancer, including lung adenocarcinoma (LUAD). The lineage specifying transcription factors FoxA1 and FoxA2 (FoxA1/2) regulate identity in NKX2-1/TTF1-negative LUAD. However, their role in NKX2-1-positive LUAD has not been systematically investigated. We find that Foxa1/2 knockout severely impairs tumorigenesis in KRAS-driven genetically engineered mouse models and human cell lines. Foxa1/2 deletion leads to collapse of a dual-identity state, marked by co-expression of pulmonary and gastrointestinal transcriptional programs, that has been implicated in LUAD progression. Mechanistically, loss of FoxA1/2 leads to aberrant NKX2-1 activity and genomic localization, which inhibits tumorigenesis and drives alternative cellular identity programs associated with non-proliferative states. This work demonstrates that FoxA1/2 expression is a novel lineage-specific vulnerability in NKX2-1-positive LUAD and identifies mechanisms of response and resistance to targeting FoxA1/2 in this disease.
Project description:Changes in cellular identity (also known as histologic transformation or lineage plasticity) can drive malignant progression and resistance to therapy in multiple types of cancer, including lung adenocarcinoma (LUAD). The lineage specifying transcription factors FoxA1 and FoxA2 (FoxA1/2) regulate identity in NKX2-1/TTF1-negative LUAD. However, their role in NKX2-1-positive LUAD has not been systematically investigated. We find that Foxa1/2 knockout severely impairs tumorigenesis in KRAS-driven genetically engineered mouse models and human cell lines. Foxa1/2 deletion leads to collapse of a dual-identity state, marked by co-expression of pulmonary and gastrointestinal transcriptional programs, that has been implicated in LUAD progression. Mechanistically, loss of FoxA1/2 leads to aberrant NKX2-1 activity and genomic localization, which inhibits tumorigenesis and drives alternative cellular identity programs associated with non-proliferative states. This work demonstrates that FoxA1/2 expression is a novel lineage-specific vulnerability in NKX2-1-positive LUAD and identifies mechanisms of response and resistance to targeting FoxA1/2 in this disease.
Project description:Changes in cellular identity (also known as histologic transformation or lineage plasticity) can drive malignant progression and resistance to therapy in multiple types of cancer, including lung adenocarcinoma (LUAD). The lineage specifying transcription factors FoxA1 and FoxA2 (FoxA1/2) regulate identity in NKX2-1/TTF1-negative LUAD. However, their role in NKX2-1-positive LUAD has not been systematically investigated. We find that Foxa1/2 knockout severely impairs tumorigenesis in KRAS-driven genetically engineered mouse models and human cell lines. Foxa1/2 deletion leads to collapse of a dual-identity state, marked by co-expression of pulmonary and gastrointestinal transcriptional programs, that has been implicated in LUAD progression. Mechanistically, loss of FoxA1/2 leads to aberrant NKX2-1 activity and genomic localization, which inhibits tumorigenesis and drives alternative cellular identity programs associated with non-proliferative states. This work demonstrates that FoxA1/2 expression is a novel lineage-specific vulnerability in NKX2-1-positive LUAD and identifies mechanisms of response and resistance to targeting FoxA1/2 in this disease.
Project description:Profound changes in cancer cell identity can alter malignant potential and therapeutic response. Loss of the pulmonary lineage specifier NKX2-1 augments the growth of KRAS-driven lung adenocarcinoma and causes pulmonary to gastric transdifferentiation. Here we show that the transcription factors FoxA1 and FoxA2 are required for initiation of mucinous NKX2-1-negative lung adenocarcinomas in the mouse and for activation of their gastric differentiation program. Foxa1/2 deletion severely impairs tumor initiation and causes a proximal shift in cellular identity, yielding tumors expressing markers of the squamocolumnar junction of the gastrointestinal tract. In contrast, stochastic loss of FoxA1/2 expression in NKX2-1-negative tumors is associated with keratinizing squamous differentiation. Using sequential in vivo recombination, we find that FoxA1/2 loss in established KRAS-driven neoplasia is sufficient for direct induction of keratinizing squamous cell carcinomas in the lung. Thus, NKX2-1, FoxA1 and FoxA2 coordinately regulate the growth and identity of lung adenocarcinoma in a context-specific manner.
Project description:Profound changes in cancer cell identity can alter malignant potential and therapeutic response. Loss of the pulmonary lineage specifier NKX2-1 augments the growth of KRAS-driven lung adenocarcinoma and causes pulmonary to gastric transdifferentiation. Here we show that the transcription factors FoxA1 and FoxA2 are required for initiation of mucinous NKX2-1-negative lung adenocarcinomas in the mouse and for activation of their gastric differentiation program. Foxa1/2 deletion severely impairs tumor initiation and causes a proximal shift in cellular identity, yielding tumors expressing markers of the squamocolumnar junction of the gastrointestinal tract. In contrast, stochastic loss of FoxA1/2 expression in NKX2-1-negative tumors is associated with keratinizing squamous differentiation. Using sequential in vivo recombination, we find that FoxA1/2 loss in established KRAS-driven neoplasia is sufficient for direct induction of keratinizing squamous cell carcinomas in the lung. Thus, NKX2-1, FoxA1 and FoxA2 coordinately regulate the growth and identity of lung adenocarcinoma in a context-specific manner.
Project description:Cancer cells often undergo lineage switching during their natural progression and in response to therapy. Lung adenocarcinomas (LUADs) exhibit a variety of differentiation states accompanied by dysregulation of lineage-specific transcription factors such as NKX2-1. Loss of NKX2-1 in human and murine LUAD leads to invasive mucinous adenocarcinoma (IMA), a subtype of lung cancer that exhibits pulmonary to gastric transdifferentiation. Human IMAs harbor a distinct spectrum of mutationally activated driver oncogenes compare to LUAD overall, suggesting that the pulmonary to gastric transdifferentiation induced by NKX2-1 loss plays a context-dependent role in LUAD progression. Using genetically engineered mouse models, we find that NKX2-1 is required for optimal BRAFV600E driven lung tumor initiation but is dispensable for growth of established lung tumors. NKX2-1-deficient, BRAFV600E driven tumors morphologically resemble human IMA, have high levels of ERK phosphorylation and exhibit a distinct response to treatment with combined BRAF/MEK inhibitors. Whereas NKX2-1-positive tumor cells enter quiescence when treated with BRAF/MEK inhibitors, residual NKX2-1-negative cells fail to exit the cell cycle in response to the same therapy. Additionally, BRAF/MEK inhibitors induce canonical WNT signaling in NKX2-1-negative lung tumor cells, which is accompanied by cell identity switching within the gastric lineage. Co-inhibition of MAPK and WNT pathways blocked elements of this lineage switch in vitro and interfered with cell cycle changes imposed by MAPK inhibition in vivo. Our data show that there is a complex and reciprocal relationship between lineage specifiers and oncogenic signaling pathways in the regulation of LUAD identity and suggest that lineage switching induced by targeted therapies may confer new therapeutic vulnerabilities.
Project description:During cancer evolution, cellular differentiation programs become dysregulated. The transcription factor Nkx2-1 is a master regulator of pulmonary differentiation that is downregulated in poorly differentiated lung adenocarcinoma. Here we use conditional murine genetics to study the fate of lung epithelial cells upon loss of their master cell fate regulator. Nkx2-1 deletion in normal and neoplastic lung causes not only loss of pulmonary identity but also gastric transdifferentiation. Nkx2-1 maintains pulmonary identity by sequestering the Foxa1 transcription factor at lung-specific loci and inhibiting Foxa1 binding to gastrointestinal targets. Murine Nkx2-1-negative lung tumors mimic the mucinous subtype of human lung adenocarcinoma, which also exhibits gastric transdifferentiation. Nkx2-1-negative lung adenocarcinomas are dependent on the gastrointestinal gene Hnf4a for efficient initiation. Thus, loss of Nkx2-1 results in transdifferentiation rather than stable dedifferentiation in vivo, suggesting that inactivation of both active and latent differentiation programs may be required for tumors to reach a primitive, dedifferentiated state. The study was designed to compare the expression profiles of Nkx2-1-positive lung adenocarcinomas with tumors in which Nkx2-1 was deleted at the time of initiation or 6-7 months after initiation.