Virulence differences in Toxoplasma mediated by amplification of polymorphic pseudokinases.
Ontology highlight
ABSTRACT: The population structure of Toxoplasma gondii includes three highly prevalent clonal lineages, types I, II, and III, which differ greatly in virulence in the mouse model. Previous studies have implicated a family of serine threonine protein kinases found in rhoptries (ROPs) as important in mediating virulence differences between types I vs. III and II vs. III. Here, we explored the genetic basis of differences in virulence between the highly virulent type I lineage and moderately virulent type II based on a new genetic cross and linkage mapping. Genome-wide association revealed a single quantitative trait locus controls the > 4 log difference in lethality between these strains. Neither ROP16 nor ROP18, previously implicated in virulence differences in T. gondii, were found to contribute to differences between types I and II. Instead, the major virulence locus contained a cluster of pseudokinases denoted as rhoptry protein 5 (ROP5); this locus contains a tandem cluster of polymorphic alleles that differed in expression levels between strains. ROP5 alleles contained only part of the catalytic triad of canonical S/T kinases, and consistent with this they lack demonstrable kinase activity in vitro. Genetic disruption of the rop5 locus in the type I lineage lead to a > 5 log increase in the lethal dose, and surviving mice developed lasting immunity and were protected from an otherwise lethal challenge. These findings reveal that amplification of a polymorphic cluster of pseudokinases plays an important role in pathogenesis of toxoplasmosis in the mouse model.
ORGANISM(S): Toxoplasma gondii
PROVIDER: GSE24905 | GEO | 2011/05/03
SECONDARY ACCESSION(S): PRJNA132095
REPOSITORIES: GEO
ACCESS DATA