MUTATIONS IN FIBRONECTIN IMPAIR CHONDROGENESIS IN CORNER FRACTURE TYPE SPONDYLOMETAPHYSEAL DYSPLASIA
Ontology highlight
ABSTRACT: The study aims to investigate molecular consequences of mutations in matrix glycoprotein fibronectin (FN) in pathological condition corner fracture type spondylometaphyseal dysplasia (SMDCF). SMDCF is a rare group of skeletal dysplasia wherein the patients are characterized by severe skeletal anomalies such as short stature, scoliosis , coxa vara, genu varum and more. To investigate the molecular mechanism underlying the pathogenesis of SMDCF, we analyzed the cellular transcriptome of SMDCF patient using next generation RNA sequencing on iPSC derived mesenchymal stem cells and chondrocytes.
Project description:Matrix Gla protein (MGP) is a vitamin K-dependent post-translationally modified protein, highly expressed in vascular and cartilaginous tissues. It is a potent inhibitor of extracellular matrix mineralization. Biallelic loss of function variants in the MGP gene cause Keutel syndrome, an autosomal recessive disorder characterized by widespread calcification of various cartilaginous tissues and skeletal and vascular anomalies. In this study, we report four individuals from two unrelated families with two heterozygous variants in MGP, both altering the Cysteine 19 residue to phenylalanine or tyrosine. These individuals presented with a spondyloepiphyseal skeletal dysplasia characterized by short stature with a short trunk, diffuse platyspondyly, midface retrusion, progressive epiphyseal anomalies and brachytelephalangism. We investigated the cellular and molecular effects of one of the heterozygous deleterious variants (C19F) using both cell and genetically modified mouse models. Heterozygous ‘knock-in’ mice expressing C19F MGP recapitulated most of the skeletal anomalies observed in the affected individuals. We demonstrated that the main underlying mechanism leading to the observed skeletal dysplasia is endoplasmic reticulum stress-induced apoptosis of the growth plate chondrocytes. Our findings support that heterozygous variants in MGP altering Cys19 residue cause autosomal dominant spondyloepiphyseal dysplasia, a condition distinct from Keutel syndrome both clinically and molecularly.
Project description:The influence of the extracellular matrix (ECM) within the stem cell niche remains poorly understood. We found that Syndecan-4 (Sdc4) and Frizzled-7 (Fzd7) form a coreceptor complex in satellite cells and that binding of the ECM glycoprotein Fibronectin (FN) to Sdc4 stimulates the ability of Wnt7a to induce the symmetric expansion of satellite stem cells. Newly activated satellite cells dynamically remodel their niche via transient high-level expression of FN. Knockdown of FN in prospectively isolated satellite cells severely impaired their ability to repopulate the satellite cell niche. Conversely, in vivo overexpression of FN with Wnt7a dramatically stimulated the expansion of satellite stem cells in regenerating muscle. Therefore, activating satellite cells remodel their niche through autologous expression of FN that provides feedback to stimulate Wnt7a signaling through the Fzd7/Sdc4 coreceptor complex. Thus, FN and Wnt7a together regulate the homeostatic levels of satellite stem cells and satellite myogenic cells during regenerative myogenesis. The data set contains one microarray of pooled quiescent skeletal muscle satellite cells
Project description:Pseudodiastrophic dysplasia (PDD) is a severe skeletal dysplasia associated with prenatal manifestation and early lethality. Clinically, PDD is classified as a ‘dysplasia with multiple joint dislocations’ however, the molecular aetiology of the disorder is currently unknown. In order to identify the genetic defects underlying PDD, we performed whole exome sequencing (WES) on 3 patients from 2 unrelated families, clinically diagnosed with PDD. WES resulted in the identification of bi-allelic variants in the established skeletal dysplasia genes, B3GAT3 (Family 1) and CANT1 (Family 2). Mutations in these genes have previously been reported to cause ‘multiple joint dislocations, short stature, and craniofacial dysmorphism with or without congenital heart defects’ (B3GAT3) and Desbuquois dysplasia 1 (CANT1); disorders in the same nosological group as PDD. Follow-up of the B3GAT3 variants demonstrated significantly reduced B3GAT3/GlcAT-I expression. Downstream in vitro functional analysis revealed abolished biosynthesis of glycosaminoglycan side chains on proteoglycans. Functional evaluation of the CANT1 variant showed impaired nucleotidase activity, which results in inhibition of glycosaminoglycan synthesis through accumulation of uridine diphosphate. For the families described in this study, the PDD phenotype was caused by mutations in the known skeletal dysplasia genes B3GAT3 and CANT1, demonstrating the advantage of genomic analyses in delineating the molecular diagnosis of skeletal dysplasias. This finding expands the phenotypic spectrum of B3GAT3- and CANT1- related skeletal dysplasias to include PDD, and highlights the significant phenotypic overlap of conditions within the proteoglycan biosynthesis pathway.
Project description:The influence of the extracellular matrix (ECM) within the stem cell niche remains poorly understood. We found that Syndecan-4 (Sdc4) and Frizzled-7 (Fzd7) form a coreceptor complex in satellite cells and that binding of the ECM glycoprotein Fibronectin (FN) to Sdc4 stimulates the ability of Wnt7a to induce the symmetric expansion of satellite stem cells. Newly activated satellite cells dynamically remodel their niche via transient high-level expression of FN. Knockdown of FN in prospectively isolated satellite cells severely impaired their ability to repopulate the satellite cell niche. Conversely, in vivo overexpression of FN with Wnt7a dramatically stimulated the expansion of satellite stem cells in regenerating muscle. Therefore, activating satellite cells remodel their niche through autologous expression of FN that provides feedback to stimulate Wnt7a signaling through the Fzd7/Sdc4 coreceptor complex. Thus, FN and Wnt7a together regulate the homeostatic levels of satellite stem cells and satellite myogenic cells during regenerative myogenesis.
Project description:Rationale: Damage to airway epithelium is followed by deposition of extracellular matrix (ECM) and migration of adjacent epithelial cells. We have shown that epithelial cells from asthmatic children fail to heal a wound in vitro. Objectives: To determine whether dysregulated ECM production by the epithelium plays a role in aberrant repair in asthma. Methods: Airway epithelial cells (AEC) from children with asthma (n=36), healthy atopic (n=23) and healthy non-atopic controls (n=53) were investigated by microarray, gene expression and silencing, transcript regulation analysis and ability to close mechanical wounds. Results: Wound repair of AEC from healthy and atopic children were not significantly different and were both faster than AEC from asthmatics. Microarray analysis revealed differential expression of multiple gene sets associated with repair and remodeling in asthmatic AEC. Fibronectin (FN) was the only ECM component whose expression was significantly lower in asthmatic AEC. Expression differences were verified by qPCR and ELISA, and reduced FN expression persisted in asthmatic cells over passage. Silencing of FN expression in non-asthmatic AEC inhibited wound repair, while addition of FN to asthmatic AEC restored reparative capacity. Asthmatic AEC failed to synthesize FN in response to wounding or cytokine/growth factor stimulation. Exposure to 5â, 2âdeoxyazacytidine had no effect on FN expression and subsequent analysis of the FN promoter did not show evidence of DNA methylation. Conclusions: These data show that the reduced capacity of asthmatic epithelial cells to secrete FN is an important contributor to the dysregulated AEC repair observed in these cells. 16 arrays, 2 experimental groups, asthma atopic, AA, and healthy non-atopic, HN.
Project description:Rationale: Damage to airway epithelium is followed by deposition of extracellular matrix (ECM) and migration of adjacent epithelial cells. We have shown that epithelial cells from asthmatic children fail to heal a wound in vitro. Objectives: To determine whether dysregulated ECM production by the epithelium plays a role in aberrant repair in asthma. Methods: Airway epithelial cells (AEC) from children with asthma (n=36), healthy atopic (n=23) and healthy non-atopic controls (n=53) were investigated by microarray, gene expression and silencing, transcript regulation analysis and ability to close mechanical wounds. Results: Wound repair of AEC from healthy and atopic children were not significantly different and were both faster than AEC from asthmatics. Microarray analysis revealed differential expression of multiple gene sets associated with repair and remodeling in asthmatic AEC. Fibronectin (FN) was the only ECM component whose expression was significantly lower in asthmatic AEC. Expression differences were verified by qPCR and ELISA, and reduced FN expression persisted in asthmatic cells over passage. Silencing of FN expression in non-asthmatic AEC inhibited wound repair, while addition of FN to asthmatic AEC restored reparative capacity. Asthmatic AEC failed to synthesize FN in response to wounding or cytokine/growth factor stimulation. Exposure to 5’, 2’deoxyazacytidine had no effect on FN expression and subsequent analysis of the FN promoter did not show evidence of DNA methylation. Conclusions: These data show that the reduced capacity of asthmatic epithelial cells to secrete FN is an important contributor to the dysregulated AEC repair observed in these cells.
Project description:Objective: Fibronectin is a matrix protein that is fragmented during cartilage degradation in osteoarthritis (OA). Treatment of chondrocytes with fibronectin fragments (FN-f) has been used to model OA in vitro, but the system has not been fully characterized. This study sought to define the transcriptional response of chondrocytes to FN-f, and directly compare it to responses traditionally observed in OA. Design: Normal human femoral chondrocytes isolated from tissue donors were treated with either FN-f or PBS (control) for 3, 6, or 18 hours. RNA-seq libraries were compared between time-matched FN-f and control samples in order to identify changes in gene expression over time. Differentially expressed genes were compared to a published OA gene set and used for pathway, transcription factor motif, and kinome analysis. Results: FN-f treatment resulted in 3,914 differentially expressed genes over the time course. Genes that are up- or downregulated in OA were significantly up- (p < 0.00001) or downregulated (p < 0.0004) in response to FN-f. Early response genes were involved in proinflammatory pathways, whereas many late response genes were involved in ferroptosis. The promoters of upregulated genes were enriched for NF-?B, AP-1, and IRF motifs. Highly upregulated kinases included CAMK1G, IRAK2, and the uncharacterized kinase DYRK3, while growth factor receptors TGFBR2 and FGFR2 were downregulated. Conclusions: FN-f treatment of normal human articular chondrocytes recapitulated many key aspects of the OA chondrocyte phenotype. This in vitro model is promising for future OA studies, especially considering its compatibility with genomics and genome-editing techniques.