Dynamic Control of RNA-DNA Hybrid Formation Orchestrates DNA2 Activation at Stalled Forks by RNAPII and DDX39A [ChIP-seq]
Ontology highlight
ABSTRACT: The accurate processing of stalled forks by the DNA2 nuclease is pivotal for replication fork restart, as excessive degradation poses a threat to genomic stability. However, the regulation of DNA2 activity at stalled forks remains elusive. Here, we demonstrate that, upon replication stress, RNA polymerase II (RNAPII) is recruited to stalled forks, actively promoting the transient formation of RNA-DNA hybrids. Furthermore, we provide evidence that DDX39A, functioning as an RNA-DNA resolver, unwinds these hybrids, allowing DNA2 access to stalled forks. This orchestrated process facilitates controlled DNA2-dependent stalled fork processing and restart. Nevertheless, premature removal of RNA-DNA hybrids at stalled forks leads to DNA2-dependent excessive degradation of nascent DNA. Finally, we reveal that loss of DDX39A enhances the protection of stalled forks in BRCA1/2-deficient cells, consequently conferring chemoresistance within this specific cellular context. Our results suggest that the dynamic regulation of RNA-DNA hybrid formation at stalled forks by RNAPII and DDX39A precisely governs the timing of DNA2 activation, contributing to stalled fork processing and restart, ultimately promoting genome stability.
ORGANISM(S): Homo sapiens
PROVIDER: GSE252172 | GEO | 2024/12/19
REPOSITORIES: GEO
ACCESS DATA