Synthetic reversed sequences reveal default genomic states [Yeast_ATACseq]
Ontology highlight
ABSTRACT: Understanding default genome states would help interpret whether pervasive transcriptional activity has biological meaning. The genomes of extant organism have undergone billions of years of evolution, making it unclear whether observed genomic activities represent the effects of selection or “noise”. We addressed this question by introducing a novel 101-kb locus into the genomes of S. cerevisiae and M. musculus, and characterizing genomic activity. The locus was designed by reversing but not complementing human HPRT1, including substantial flank-ing regions, retaining basic sequence features but ablating evolved coding or regulatory infor-mation. We observed widespread activity of both reversed and native HPRT1 loci in yeast, de-spite the lack of evolved yeast promoters. In contrast, the reversed locus displayed no activity at all in mouse embryonic stem cells, instead showing repressive chromatin signatures. The re-pressive signature was alleviated in a locus variant lacking CpG dinucleotides; nevertheless this variant too was transcriptionally inactive. These results show that novel genomic sequences lacking coding information are active in yeast, but inactive in mouse embryonic stem cells, con-sistent with a major difference in “default genomic states” between these two divergent eukary-otic cell types, with implications for understanding pervasive transcription, horizontal transfer of genetic information, and new gene birth.
ORGANISM(S): Saccharomyces cerevisiae
PROVIDER: GSE252468 | GEO | 2024/01/16
REPOSITORIES: GEO
ACCESS DATA