Expanding the Pathways of Manganese Homeostasis: Role of a Small Manganese Chaperone Protein, MntS
Ontology highlight
ABSTRACT: Escherichia coli possesses >65 small proteins of <50 amino acids, many of which are uncharacterized. We have identified a new small protein, MntS, involved in manganese homeostasis. Manganese is a critical micronutrient, serving as an enzyme cofactor and protecting against oxidative stress. Yet manganese is toxic in excess and little is known about its function in cells. Bacteria carefully control intracellular manganese levels using the transcription regulator MntR. Before this work, mntH, which encodes a manganese importer, was the only gene known to respond to manganese via MntR repression in E. coli K12. We demonstrated that mntS is another member of the MntR manganese regulon. We also identified yebN, which encodes a putative manganese efflux pump, as the first gene positively regulated by MntR in Enterobacteria. Since MntS is expressed when manganese levels are low, causes manganese sensitivity when overexpressed, and binds manganese, we propose that MntS may be a manganese chaperone. This study reveals new factors involved in manganese regulation and metabolism and expands our knowledge of how small proteins function.
ORGANISM(S): Escherichia coli Escherichia coli str. K-12 substr. MG1655
PROVIDER: GSE25318 | GEO | 2011/12/08
SECONDARY ACCESSION(S): PRJNA134837
REPOSITORIES: GEO
ACCESS DATA