Transcriptomics

Dataset Information

0

Exploiting a metabolic vulnerability in brain tumour stem cells using a brain-penetrant drug with safe profile


ABSTRACT: Glioblastoma (GB) remains one of the most treatment refractory and fatal tumour in humans. GB contains a population of self-renewing stem cells, the brain tumour stem cells (BTSC) that are highly resistant to therapy and are at the origin of tumour relapse. Here, we report, for the first time, that mubritinib potently impairs stemness and growth of patient-derived BTSCs harboring different oncogenic mutations. Mechanistically, by employing bioenergetic assays and rescue experiments, we provide compelling evidence that mubritinib acts on complex I of the electron transport chain to impair BTSC stemness pathways, self-renewal and proliferation. Global gene expression profiling revealed that mubritinib alters the proliferative, neural-progenitor-like, and the cell-cycling state signatures. We employed in vivo pharmacokinetic assays to establish that mubritinib crosses the blood-brain barrier. Using preclinical models of patient-derived and syngeneic murine orthotopic xenografts, we demonstrated that mubritinib delays GB tumourigenesis, and expands lifespan of animals. Interestingly, its combination with radiotherapy offers survival advantage to animals. Strikingly, thorough toxicological and behavioral studies revealed that mubritinib does not induce any damage to normal cells and has a well-tolerated and safe profile. Our work warrants further exploration of this drug in in-human clinical trials for better management of GB tumours.

ORGANISM(S): Homo sapiens

PROVIDER: GSE253362 | GEO | 2024/05/15

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2021-08-31 | GSE180981 | GEO
2020-12-25 | GSE155300 | GEO
2019-07-15 | GSE110868 | GEO
2019-07-15 | GSE110867 | GEO
2019-07-15 | GSE110866 | GEO
2023-07-09 | GSE214721 | GEO
2024-05-01 | GSE114456 | GEO
2022-02-02 | GSE126212 | GEO
2013-04-17 | GSE46125 | GEO
2014-08-30 | E-GEOD-60806 | biostudies-arrayexpress