M6A-seq analysis of T-ALL cells following FTO silencing
Ontology highlight
ABSTRACT: To identify transcripts directly regulated by FTO through m6A modification in T-ALL, we conducted m6A-seq after silencing FTO in KOPTK1 cells
Project description:FTO serves as one of the demethylases for RNA N (6)-methyladenosine (m6A). ELK3 is responsible for encoding a member within the ETS-domain transcription factor family and the ternary complex factor (TCF) subfamily. To elucidate the roles and mechanisms of FTO and ELK3 in human T-cell acute lymphoblastic leukemia (T-ALL), we conducted RNA-seq analyses in KOPTK1 or CUTLL1 T-ALL cells following the silencing of FTO or ELK3
Project description:N6-methyladenosine (m6A) modification is the major post-transcriptional modification present in mammalian mRNA. m6A controls fundamental biological processes including cell proliferation, but the molecular mechanism remains unclear. Herein, we demonstrate that the m6A demethylase fat mass and obesity-associated (FTO) controls the cell cycle by targeting cyclin D1, the key regulator required for G1 phase progression. FTO silencing suppressed cyclin D1 expression and induced G1 arrest. FTO depletion upregulated cyclin D1 m6A modification, which in turn accelerated the degradation of cyclin D1 mRNA. Importantly, m6A modification of cyclin D1 oscillates in a cell cycle-dependent manner; m6A levels were suppressed during the G1 phase and enhanced during other phases. Low m6A levels during G1 were associated with nuclear translocation of FTO from the cytosol. Furthermore, nucleocytoplasmic shuttling of FTO is regulated by Casein Kinase II-mediated phosphorylation at Thr 150 of FTO. Our results highlight the role of m6A in regulating cyclin D1 mRNA stability, and add a new layer of complexity to cell cycle regulation.
Project description:Zinc-finger homeobox 3 (ZFHX3, also known as ATBF1) suppresses prostatic tumorigenesis. ZFHX3 is frequently found to have numerous deletions in human prostate cancer (PCa). However, the underlying molecular function of ZFHX3 during prostatic tumorigenesis is not well understood. N6-methyladenosine (m6A) modification in RNA plays a critical role in the development of cancers; however, the relationship between ZFHX3 and m6A modification is largely unknown in PCa. In this study, we found that ZFHX3 knockdown decreased total m6A levels through enhancing the transcriptional activity of FTO in PCa cells. Importantly, FTO inhibition suppressed cell proliferation and rescued the promoting function of ZFHX3 knockdown on cell proliferation. In vivo, we verified that FTO was upregulated and ZFHX3 was decreased in PCa patients and that a high level of ZFHX3 is indispensable for low FTO expression and is correlated with better patient survival. Through transcriptome sequencing and Me-RIP sequencing, we revealed that E2F2 and CDKN2C were the direct targets of FTO-mediated m6A modification and ZFXH3 was required for the regulation of FTO on E2F2 and CDKN2C expression. Unexpectedly, we uncovered that ZFHX3 expression was in return regulated by FTO in a m6A-dependent way. These findings establish a novel crosstalk mechanism between ZFHX3 and FTO in prostatic tumorigenesis.
Project description:Our understanding of posttranscriptional modifications that decorate RNA, a regulatory layer positioned between DNA and proteins, is in its infancy. N6-methyladenosine (m6A) is the most prevalent internal modification in messenger RNAs that is installed and erased by m6A methyltransferases and demethylases. The importance of these enzymes in cancer is rapidly emerging, yet information of their specific mode of actions during disease progression remain largely unknown. In the present study, we report that the m6A RNA demethylase FTO controls EMT and invasion in cancer through regulation of the Wnt pathway. We find that loss of FTO, in contrast to acute myeloid leukemia, is frequent in many cancer types, including breast and prostate cancers. Knockdown of FTO promotes tumor progression – specifically migration and invasion – in breast and prostate cancer cells. Furthermore, implantation of these cells accelerates tumor progression in recipient mice in vivo. In these tumors, FTO depletion leads to m6A-dependent activation of Wnt signaling, which drives an enhanced EMT program and invasion, thus leading to poor clinical outcome. However, loss of FTO also sensitizes cancers cells to Wnt inhibition, offering a rationale for the therapeutic targeting of Wnt for cancer patients with low FTO levels. Together, our work reveals FTO as a novel regulator of EMT and an unexpected mechanism by which Wnt signals are dysregulated in tumors, providing a rationale to stratify cancer patients treated with Wnt inhibitor. These data uncover a previously unrecognized relationship between RNA modification and EMT in cancer.
Project description:Our understanding of posttranscriptional modifications that decorate RNA, a regulatory layer positioned between DNA and proteins, is in its infancy. N6-methyladenosine (m6A) is the most prevalent internal modification in messenger RNAs that is installed and erased by m6A methyltransferases and demethylases. The importance of these enzymes in cancer is rapidly emerging, yet information of their specific mode of actions during disease progression remain largely unknown. In the present study, we report that the m6A RNA demethylase FTO controls EMT and invasion in cancer through regulation of the Wnt pathway. We find that loss of FTO, in contrast to acute myeloid leukemia, is frequent in many cancer types, including breast and prostate cancers. Knockdown of FTO promotes tumor progression – specifically migration and invasion – in breast and prostate cancer cells. Furthermore, implantation of these cells accelerates tumor progression in recipient mice in vivo. In these tumors, FTO depletion leads to m6A-dependent activation of Wnt signaling, which drives an enhanced EMT program and invasion, thus leading to poor clinical outcome. However, loss of FTO also sensitizes cancers cells to Wnt inhibition, offering a rationale for the therapeutic targeting of Wnt for cancer patients with low FTO levels. Together, our work reveals FTO as a novel regulator of EMT and an unexpected mechanism by which Wnt signals are dysregulated in tumors, providing a rationale to stratify cancer patients treated with Wnt inhibitor. These data uncover a previously unrecognized relationship between RNA modification and EMT in cancer.
Project description:N6-methyladenosine (m6A) RNA methylation is the most abundant internal chemical modifications in eukaryotic messenger RNA (mRNA) as well as long non-coding RNA (lncRNA). Recently, m6A RNA methylation research was revived by the discovery of the fat mass- and obesity-associated protein (FTO) as the first RNA demethylase, implicating that m6A RNA methylation is a reversible and dynamic modification and may have critical biological functions. Emerging evidence has shown that m6A modifications in mRNAs and lncRNAs play crucial roles in regulating RNA fate and function in biological processes in the past several years. As the first identified RNA demethylase that regulates the demethylation of target mRNAs, FTO has been reported to play an oncogenic role in leukemia and glioblastoma stem cells. To identify the target genes of FTO in melanoma cells, we used m6A IP seq coupled with RNA seq to determine the potential demethylation and gene targets across the whole transcriptome for FTO, and identified more than 1,000 genes.
Project description:Functional CD8+ T cell immune response is critical for immune surveillance and host defense against infection and tumor. Epigenetic mechanisms associated with RNA modification in controlling CD8+ T cell response remain poorly understood. Here, by T cell-specific deletion of fat mass and obesity-associated protein (FTO), a critical N6-methyladenosine (m6A) demethylase, we revealed that FTO was indispensable for sufficient CD8+ T cell immune response and protective function. FTO ablation led to considerable cell death in activated CD8+ T cells, which was attributed to apoptosis. MeRIP-seq analysis identified the upregulated m6A modification on Fas mRNA in FTO deficient CD8+ T cells. Loss of FTO promoted Fas expression via enhancing the Fas mRNA stability dependent on m6A reader IGF2BP3. Mutation of the Fas m6A sites or knockdown IGF2BP3 could rescue the upregulated Fas expression and cell apoptosis caused by FTO ablation in CD8+ T cells. Our findings defined a novel epigenetic regulatory mechanism of FTO-mediated m6A modification in supporting CD8+ T cell immune responses, providing new insights into understanding the post-transcriptional regulation in CD8+ T cell immunological functions.
Project description:N6-methyladenosine (m6A) is the most abundant internal modification on mammalian messenger RNA (mRNA). It is installed by a writer complex and can be reversed by erasers such as the fat mass and obesity-associated protein (FTO). Despite extensive research, the primary physiological substrates of FTO in mammalian tissues and development remain elusive. Here, we show that FTO mediates m6A demethylation of long-interspersed element-1 (LINE1) RNA in mouse embryonic stem cells (mESCs), regulating LINE1 RNA abundance and the local chromatin state, which in turn modulates transcription of LINE1-containing genes. FTO-mediated LINE1 RNA m6A demethylation also plays regulatory roles in shaping chromatin state and gene expression during mouse oocyte and embryonic development. Our results suggest broad effects of LINE1 RNA m6A demethylation by FTO in mammals.
Project description:To identify potential mRNA targets of FTO whose m6A levels are influenced in acute myeloid leukemia (AML) cells, we conducted m6A-seq for mRNA isolated from MA9.3ITD cells with and without knockdown of FTO