Spatial Variability of Grape Berry Maturation Program at the Molecular Level
Ontology highlight
ABSTRACT: The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield, and quality parameters and determine spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways contributing to different grape quality traits behave in zones diverging on any of these parameters. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated through a Normalized Difference Vegetation Index (NDVI) map calculated from a multispectral image and detailed ground-truthing (e.g., vegetative, yield, and berry ripening compositional parameters). The relationships between NDVI and ground measurements were explored by correlation analysis. Moreover, berries were investigated by microarray gene expression analysis performed at five time points from fruit set to full ripening. Comparison between the transcriptomes of samples taken from locations with the highest and lowest NDVI values identified 968 differentially expressed genes. Spatial variability maps of the expression level of key berry ripening genes showed consistent patterns aligned with the vineyard vigor map. These insights indicate that berries from different vigor zones present distinct molecular maturation programs and suggest that transcriptome analysis may be a valuable tool for the management of vineyard variability.
Project description:To gain a comprehensive understanding of non-histone methylation during grape berry ripening. A 4D-label free quantitative proteomics approach was used to study the non-histone methylation of lysine during grape berry development and ripening. The ‘Kyoho’ grape berries at EL 31, EL 33, EL 35 and EL 37 were collected from six trees with equal vigor were selected in spring 2022 at the vineyard of the Henan University of Science and Technology, Luoyang, Henan, China (34.66° N, 112.37° E).
Project description:The interplay between environmental and genetic factors conditions the fruit ripening program in plants. Transcriptome analysis of grapevine fruits can help understanding these interactions to consciously cope with conditions leading to detrimental effects for viticultural purposes. However, considering the grapevine characteristic ripening asynchrony, which can be intensified by contrasting conditions, accurate grape sampling may be essential for molecular comparisons. In this study, berry density sorting according to floatability in NaCl solutions was assessed as a grape ripening staging strategy. Total sugar content was more correlated with berry density than with other non-invasive ripening parameters. The transcriptome was compared between three density classes collected near commercial maturity using grapevine whole-genome NimbleGen microarrays. Expression profiles clearly related with ripening progression were detected in a density series simultaneously collected from a vineyard of Albariño. By contrast, considerable differences were detected when the same density series was sampled on two different dates from the same vineyard of Tempranillo. Functional analysis indicated that environmental differences between both sampling moments determined most of these expression differences. Ripening degree-dependent responses to the environment were also detected. Finally, the effect of the sorting procedures on the grape transcriptome showed negligible when it was directly tested. Altogether, these findings evidence the convenience of homogenizing the developmental stage and the sampling time conditions for transcriptome comparisons. Berry density sorting proved useful to this end, although this method could be limited when the berry sugar concentration is not determined by the ripening developmental program. The potential berry transcriptional response to the high concentrated salt solutions used for berry density-sorting may involve a concern on the suitability of this method for transcriptomic studies. This possibility was directly tested by comparing the expression of berries immersed in a highly concentrated NaCl solution (170 g•L-1) during a relatively long time lapse (1 h) with that in berries kept at room air. This experiment was carried out using Tempranillo grapes at mid-véraison to standardize the ripening state by selecting berries with the same proportion of coloured skin surface (50%, corresponding to TSS of 9.9 ±0.3 ºBrix). Berries grown under watering (W) and no-watering (NW) conditions were analysed to test for possible irrigation-NaCl solution interactions affecting berry gene expression. No significant DEG was identified when the effect of the NaCl solution was analysed separately for berries collected from W or NW blocks (≥2-fold change and B-H adjusted P≤0.05 in 2-class limma). When W and NW samples were used together to analyse the effect of the NaCl immersion irrespectively of the irrigation treatment, 15 genes were detected with a B-H adjusted P≤0.05 and only 13 of these showed ≥2-fold change, confirming the slight effect. In summary, the effect of the NaCl immersion on the berry transcriptome is negligible and does not seem to interact with the transcriptomic response to other environmental cues.
Project description:Grapevine cluster compactness is a multi-componential trait of agronomical interest; it greatly influences the vineyard management and the visual aspect of table grape. Clusters with greater compactness are more susceptible to disease. The compactness can be break down in a patchwork of agronomical traits, each having agronomical importance that includes parameters related to inflorescence and cluster architecture (cluster length and width, length of pedicels, etc.), fruitfulness (number of berries, number of seeds) and berry (size, shape, volume...). Through visual evaluation of a collection of 730 clones from the cultivar Tempranillo and 501 clones from Garnacha Tinta we identified and fully phenotyped distinct clones which transcriptomes were compared at key developmental stages in order to identify the genes playing a role in mechanisms involved in cluster compactness such as the ones determining number of berries, cluster length or berry size. Key genes involved in this process were identified. The findings lead us to hypothesize that berry size and/or number at ripening are greatly influenced by the rate of cell replication in flowers during the first stages after pollination.
Project description:Background: The composition of grapevine berry at harvest is a major determinant of wine quality. Optimal oenological maturity of berries is characterized by a high sugar/acidity ratio, high anthocyanin content in the skin, and low astringency. However, harvest time is still mostly determined empirically, based on crude biochemical composition and berry tasting. In this context, it is interesting to identify genes that are expressed/repressed specifically at the late stages of ripening and which may be used as indicators of maturity. Results: Whole bunches and berries sorted by density were collected in vineyard on Chardonnay (white cultivar) grapevines for two consecutive years at three stages of ripening (7-days before harvest (TH-7),harvest (TH), and 10-days after harvest (TH+10)). Microvinification and sensory analysis indicate that the quality of the wines made from the whole bunches collected at TH-7, TH and TH+10 differed, TH providing the highest quality wines. In parallel, gene expression was studied with Qiagen/Operon microarrays using two types of samples, i.e. whole bunches and berries sorted by density. Only 12 genes were consistently up- or down-regulated in whole bunches and density sorted berries for the two years studied in Chardonnay. 52 genes were differentially expressed between the TH-7 and TH samples. In order to determine whether these genes followed a similar pattern of expression during the late stagesof berry ripening in a red cultivar, nine genes were selected for RT-PCR analysis with Cabernet Sauvignon grown under two different temperature regimes affecting the precocity of ripening. The expression profiles and their relationship to ripening were confirmed in Cabernet Sauvignon for seven genes, encoding a carotenoid cleavage dioxygenase, a galactinol synthase, a late embryogenesis abundant protein, a dirigent-like protein, a histidine kinase receptor, avalencene synthase and a putative S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase. Conclusions: This set of up- and down-regulated genes characterize the late stages of berry ripening in the two cultivars studied, and are indirectly linked to wine quality. They might be used directly or indirectly to design immunological, biochemical or molecular tools aimed at the determination of optimal ripening in these cultivars.
Project description:The interplay between environmental and genetic factors conditions the fruit ripening program in plants. Transcriptome analysis of grapevine fruits can help understanding these interactions to consciously cope with conditions leading to detrimental effects for viticultural purposes. However, considering the grapevine characteristic ripening asynchrony, which can be intensified by contrasting conditions, accurate grape sampling may be essential for molecular comparisons. In this study, berry density sorting according to floatability in NaCl solutions was assessed as a grape ripening staging strategy. Total sugar content was more correlated with berry density than with other non-invasive ripening parameters. The transcriptome was compared between three density classes collected near commercial maturity using grapevine whole-genome NimbleGen microarrays. Expression profiles clearly related with ripening progression were detected in a density series simultaneously collected from a vineyard of Albariño. By contrast, considerable differences were detected when the same density series was sampled on two different dates from the same vineyard of Tempranillo. Functional analysis indicated that environmental differences between both sampling moments determined most of these expression differences. Ripening degree-dependent responses to the environment were also detected. Finally, the effect of the sorting procedures on the grape transcriptome showed negligible when it was directly tested. Altogether, these findings evidence the convenience of homogenizing the developmental stage and the sampling time conditions for transcriptome comparisons. Berry density sorting proved useful to this end, although this method could be limited when the berry sugar concentration is not determined by the ripening developmental program.
Project description:Grape berries undergo considerable physical and biochemical changes during the ripening process. Ripening is characterized by a number of changes, including the degradation of chlorophyll, an increase in berry deformability, a rapid increase in the level of hexoses in the berry vacuole, an increase in berry volume, the catabolism of organic acids, the development of skin colour, and the formation of compounds that influence flavour, aroma, and therefore, wine quality. The aim of this work is to identify differentially expressed genes during grape ripening by microarray and real-time PCR techniques. Using a custom array of new generation, we analysed the expression of 6000 grape genes from pre-veraison to full maturity, in Vitis vinifera cultivar Muscat of Hamburg, in two different years (2006 and 2007). Five time points per year and two biological replicates per stadium were considered. To reduced intra-plant and inter-plant biological variability, for each ripening stadium we collected around hundred berries from several bunch grapes of five plants of V. vinifera cv Muscat of Hamburg. We will use the real-time PCR technique to validate microarray data.Muscat of Hamburg. We will use the real-time PCR technique to validate microarray data.
Project description:Grapevine cluster compactness is a multi-componential trait of agronomical interest; it greatly influences the vineyard management and the visual aspect of table grape. Clusters with greater compactness are more susceptible to disease. The compactness can be break down in a patchwork of agronomical traits, each having agronomical importance that includes parameters related to inflorescence and cluster architecture (cluster length and width, length of pedicels, etc.), fruitfulness (number of berries, number of seeds) and berry (size, shape, volume...). Through visual evaluation of a collection of 730 clones from the cultivar Tempranillo and 501 clones from Garnacha Tinta we identified and fully phenotyped distinct clones which transcriptomes were compared at key developmental stages in order to identify the genes playing a role in mechanisms involved in cluster compactness such as the ones determining number of berries, cluster length or berry size. Key genes involved in this process were identified. The findings lead us to hypothesize that berry size and/or number at ripening are greatly influenced by the rate of cell replication in flowers during the first stages after pollination. A total of 57 samples were hybridized. Comparison G1 was performed between clones showing differences in the cluster compactness and in the total number of berries per cluster and berries size (compact: clone 1134. loose: clone 0368). Comparison G2 was performed between two compact clones (Garnacha Tinta 147 and 1134) significantly differing for cluster length and number of nodes (branches) of the rachis. Comparison G3 was performed with two loose clones (Garnacha Tinta 681 and 1154) differing in the number of nodes of the rachis (p<0.01). Comparisons G4 and T were performed between clones showing differences in the cluster compactness and in the total number of berries per cluster (compact: clones 0906 and 0126. loose: clones 1154 and 1041).
Project description:Noble rot results from atypical infections of ripe grape berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and accumulation of secondary metabolites that enhance wine grape quality. Noble rot-infected berries of Sémillon, a white-skinned variety, were collected over three years from a commercial vineyard at the same time fruit were harvested for botrytized wine production. Transcriptomic and metabolomic data were integrated to identify pathways associated with distinct stages of noble rot. Botrytis induced the expression of known key regulators of pathways in secondary metabolism associated with berry ripening. The activation by Botrytis during noble rot of metabolic pathways associated with berry ripening was further supported by comparisons with transcriptomes of red-skinned varieties at véraison. A prominent and common outcome of noble rot and berry ripening was the enhancement of the phenylpropanoid metabolism. Induced synthesis of stilbenes, flavonoids, and anthocyanins was supported by both transcriptional and metabolite analyses. Enzyme assays and targeted gene expression analyses of samples from the three distinct years confirmed that the activation of central and peripheral phenylpropanoid pathways is a consistent hallmark of noble rot. Finally, we show that the impact of noble rot on grape metabolism is still detectable in botrytized wines. These results demonstrate that despite the late stage of terminal senescence of a plant organ, a biotic stress can cause a major reprogramming of plant metabolism leading, in case of noble rot, to the synthesis of important metabolites for grape berry flavor and aroma.
Project description:This SuperSeries is composed of the SubSeries listed below. The interplay between environmental and genetic factors conditions the fruit ripening program in plants. Transcriptome analysis of grapevine fruits can help understanding these interactions to consciously cope with conditions leading to detrimental effects for viticultural purposes. However, considering the grapevine characteristic ripening asynchrony, which can be intensified by contrasting conditions, accurate grape sampling may be essential for molecular comparisons. In this study, berry density sorting according to floatability in NaCl solutions was assessed as a grape ripening staging strategy. Total sugar content was more correlated with berry density than with other non-invasive ripening parameters. The transcriptome was compared between three density classes collected near commercial maturity using grapevine whole-genome NimbleGen microarrays. Expression profiles clearly related with ripening progression were detected in a density series simultaneously collected from a vineyard of Albariño. By contrast, considerable differences were detected when the same density series was sampled on two different dates from the same vineyard of Tempranillo. Functional analysis indicated that environmental differences between both sampling moments determined most of these expression differences. Ripening degree-dependent responses to the environment were also detected. Finally, the effect of the sorting procedures on the grape transcriptome showed negligible when it was directly tested. Altogether, these findings evidence the convenience of homogenizing the developmental stage and the sampling time conditions for transcriptome comparisons. Berry density sorting proved useful to this end, although this method could be limited when the berry sugar concentration is not determined by the ripening developmental program.