Strain engineering for de novo synthesis of sedoheptulose from glucose
Ontology highlight
ABSTRACT: We propose a strain engineering approach for synthesizing sedoheptulose using glucose as sole feedstock. The gene pfkA encoding 6-phosphofructokinase in Corynebacterium glutamicum was inactivated to direct the carbon flux towards pentose phosphate pathway in the cellular metabolic network. This genetic modification successfully enabled the synthesis of sedoheptulose from glucose. Additionally, we identified key enzymes responsible for product formation through transcriptome analysis, and their corresponding genes were overexpressed, resulting in a further 20% increase in sedoheptulose production.
Project description:The dicarboxylic acid glutarate is gaining attention in the chemical and pharmaceutical industry as promising building-block. Synthesis of glutarate via microbial fermentation is a desirable aim which will allow the production of biopolymers avoiding fossil raw materials. Here, by rational metabolic engineering of the biofactory microorganism Corynebacterium glutamicum the fermentative production of glutarate from glucose was established. Modifications focused on increase glucose consumption and reduce by-products formation together with the heterologous overexpression of the L-lysine decarboxylase, putrescine transaminase and putrescine dehydrogenase genes from E. coli in the L-lysine producer GRLys1 allowed production the glutarate precursor 5-aminovalerate. Additional heterologous overexpression of 5-aminovalerate amino transferase and glutarate-semialdehyde dehydrogenase genes from C. glutamicum and three Pseudomonas species enabled glutarate synthesis from glucose. By coupling glutarate production with the glutamate synthesis of C. glutamicum glutarate titer improved 10%. The final strain was tested in a glucose-based fed-batch fermentation
Project description:Metabolically engineered Corynebacterium glutamicum strains were constructed for the enhanced production of L-arginine, and their gene expression profiles were investigated Gene expression profiles of two C. glutamicum strains AR2 and AR6 were examined for the 3043 genes twice.
Project description:Metabolically engineered Corynebacterium glutamicum strains were constructed for the enhanced production of L-arginine, and their gene expression profiles were investigated
Project description:We deveolped the C. glutamicum strains that is able to utilize levoglucoan as sole carbon and produce succinate. To understand the cellular metabolism in a levoglucosan-utilizing strain, we compared the mRNA profiling of a levoglucosan-utilizing strains grown in either glucose or levoglucosan.
Project description:The Gram-positive soil bacterium Corynebacterium glutamicum is widely used in industrial fermentative processes for the production of amino acids. The world production of L-lysine has surpassed 2 million tons per year. Glucose is taken up into the C. glutamicum cell by the phosphotransferase system PTS which can be replaced and/or enhanced by a permease and a glucokinase. Heterologous expression of the gene for the high-affinity glucose permease from Streptomyces coelicolor and of the Bacillus subitilis glucokinase gene fully compensated for the absence of the PTS in ï??hpr strains and strains grew as fast with glucose as C. glutamicum wild type. Growth of PTS-positive strains with glucose was accelerated when the endogenous inositol permease IolT2 and the glucokinase from Bacillus subtilis were overproduced using plasmid pEKEx3-IolTBest. When the genome-reduced C. glutamicum strain GRLys1 carrying additional in-frame deletions of sugR and ldhA to derepress glycolytic and PTS genes and to circumvent formation of L-lactate as by-product was transformed with this plasmid, a 40% higher L-lysine titer and a 30% higher volumetric productivity as compared to GRLys1(pEKEx3) resulted. The non-proteinogenic amino acid pipecolic acid (L-PA), a precursor of immunosuppressants, peptide antibiotics or piperidine alkaloids, can be derived from L-lysine. To enable production of L-PA by the L-lysine producing strain, the L-Lysine dehydrogenase gene lysDH from Silicibacter pomeroyi and the endogenous pyrroline 5-carboxylate reductase gene proC were expressed as synthetic operon. This enabled C. glutamicum to L-PA with a yield of 0.49 ± 0.03 gg-1 and a volumetric productivity of 0.04 ± 0.00 gL-1h-1.To the best of our knowledge, this is the first fermentative process for the production of L-PA. Two conditions tested, 200 mM NaCl Vs 200 mM pipecolic supplemented in the culture medium, control experiments done with the addition of 200mM of NaCl. Four technical replicates.
Project description:The Gram-positive soil bacterium Corynebacterium glutamicum is widely used in industrial fermentative processes for the production of amino acids. The world production of L-lysine has surpassed 2 million tons per year. Glucose is taken up into the C. glutamicum cell by the phosphotransferase system PTS which can be replaced and/or enhanced by a permease and a glucokinase. Heterologous expression of the gene for the high-affinity glucose permease from Streptomyces coelicolor and of the Bacillus subitilis glucokinase gene fully compensated for the absence of the PTS in hpr strains and strains grew as fast with glucose as C. glutamicum wild type. Growth of PTS-positive strains with glucose was accelerated when the endogenous inositol permease IolT2 and the glucokinase from Bacillus subtilis were overproduced using plasmid pEKEx3-IolTBest. When the genome-reduced C. glutamicum strain GRLys1 carrying additional in-frame deletions of sugR and ldhA to derepress glycolytic and PTS genes and to circumvent formation of L-lactate as by-product was transformed with this plasmid, a 40% higher L-lysine titer and a 30% higher volumetric productivity as compared to GRLys1(pEKEx3) resulted. The non-proteinogenic amino acid pipecolic acid (L-PA), a precursor of immunosuppressants, peptide antibiotics or piperidine alkaloids, can be derived from L-lysine. To enable production of L-PA by the L-lysine producing strain, the L-Lysine dehydrogenase gene lysDH from Silicibacter pomeroyi and the endogenous pyrroline 5-carboxylate reductase gene proC were expressed as synthetic operon. This enabled C. glutamicum to L-PA with a yield of 0.49 ± 0.03 gg-1 and a volumetric productivity of 0.04 ± 0.00 gL-1h-1.To the best of our knowledge, this is the first fermentative process for the production of L-PA.
Project description:Corynebacterium glutamicum is able to grow with lactate as sole or combined carbon and energy source. Quinone-dependent L-lactate dehydrogenase LldD is known to be essential for utilization of L-lactate by C. glutamicum. D-lactate also serves as sole carbon source for C. glutamicum ATCC 13032. Here, the gene cg1027 was shown to encode the quinone-dependent D-lactate dehydrogenase (Dld) by enzymatic analysis of the protein purified from recombinant E. coli. The absorption spectrum of purified Dld indicated the presence of FAD as bound cofactor. Inactivation of dld resulted in the loss of the ability to grow with D-lactate, which could be restored by plasmid-borne expression of dld. Heterologous expression of dld from C. glutamicum ATCC 13032 in C. efficiens enabled this species to grow with D-lactate as sole carbon source. Homologs of dld of C. glutamicum ATCC 13032 are not encoded in the sequenced genomes of other corynebacteria and mycobacteria. However, the dld locus of C. glutamicum ATCC 13032 shares 2367 bp of 2372 bp identical nucleotides with the dld locus of Propionibacterium freudenreichii subsp. shermanii, a bacterium used in Swiss-type cheese making. Both loci are flanked by insertion sequences of the same family suggesting a possible event of horizontal gene transfer.
Project description:Muconic acid production from engineered Corynebacterium glutamicum. Gene expression analysis in the pathway redesigned Corynebacterium glutamicum
Project description:Corynebacterium glutamicum shows a great potential for the production of gamma-aminobutyric acid (GABA) from glucose fermentation via putrescine. GABA, a non-protein amino acid widespread in nature, is a component of pharmaceuticals, foods and the biodegradable plastic polyamide 4. Here, the effect of GABA in the growth of C. glutamicum was evaluated. It was estimated that the presence 1.1 M of GABA in the medium reduces the maximum growth rate of C. glutamicum to half. It was also shown that the presence of GABA in the medium negatively affects the growth of C. glutamicum in ethanol as sole carbon source. Furthermore, a new route for the production of GABA in C. glutamicum was established. GABA production from glucose fermentation via putrescine was achieved by plasmid-based overexpression of putrescine transaminase (PatA) and gamma-aminobutyraldehyde dehydrogenase (PatD) in a putrescine production strain. The resultant strain can produce 5.3 ± 0.1 g L-1 of GABA. GABA production was improved by avoiding the formation of N-acetylputrescine and by reducing the amount of nitrogen in CGXII medium. Deletion of the genes responsible for GABA catabolism and GABA re-uptake led to an increase in the GABA production of 21% achieving a titer 8.0 ± 0.3 g L-1 and an increase in the volumetric productivity of 41% reaching a productivity of 0.31 g L-1 h-1, the highest volumetric productivity achieved so far for GABA production in C. glutamicum from glucose fermentation in flasks fermentations. The results obtained hitherto are very promising and competitive compared to the traditional pathway for the production of GABA.
Project description:To identify genes which are differentially expressed in Corynebacterium glutamicum chassis C1 in comparison to the prophage free strain MB001, we performed DNA microarray analyses of C. glutamicum C1 against MB001. For this purpose RNA was isolated from cells cultivated in CGXII minimal medium with 2% glucose (w v-1) and harvested in the exponential growth phase at an OD600 of 5. Four biological replicates were performed.