Transcriptomics

Dataset Information

0

Joubert Syndrome-derived induced pluripotent stem cells show altered neuronal differentiation in vitro


ABSTRACT: Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability and a peculiar cerebellar and brainstem malformation, the ’molar tooth sign’. Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67 and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.

ORGANISM(S): Homo sapiens

PROVIDER: GSE254556 | GEO | 2024/02/08

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2015-10-31 | E-GEOD-74400 | biostudies-arrayexpress
2020-04-03 | GSE65423 | GEO
2017-12-01 | GSE104499 | GEO
| PRJNA492994 | ENA
| PRJNA492768 | ENA
2020-09-30 | GSE150153 | GEO
2015-10-31 | GSE74400 | GEO
2023-05-29 | GSE233338 | GEO
2023-05-29 | GSE233337 | GEO
2023-05-29 | GSE233336 | GEO