C-terminal binding protein (CTBP2) is a novel tumor suppressor targeting the MYC-IRF4 axis in multiple myeloma
Ontology highlight
ABSTRACT: Multiple myeloma (MM) cells are addicted to MYC and its direct transactivation target IRF4 for proliferation and survival. MYC and IRF4 are still considered “undruggable” as the majority of small molecule inhibitors suffers from low potency, suboptimal pharmacokinetic properties and undesirable off-target effects. Indirect inhibition of MYC/IRF4 emerges as a therapeutic vulnerability in MM. Here, we uncover an unappreciated tumor suppressive role of C-terminal Binding Protein 2 (CTBP2) in MM via strong inhibition of the MYC-IRF4 axis. In contrast to epithelial cancers, CTBP2 is frequently downregulated in MM, in association with shortened survival, hyperproliferative features and adverse clinical outcomes. Restoration of CTBP2 exhibited potent anti-tumor effects against MM in vitro and in vivo, with marked repression of MYC-IRF4 network genes. Mechanistically, CTBP2 impeded transcription of MYC and IRF4 by histone H3 lysine 27 deacetylation (H3K27ac), and indirectly via activation of MYC repressor IFIT3. In addition, activation of interferon gene signature by CTBP2 suggested its concomitant immunomodulatory role in MM. Epigenetic studies revealed contribution of polycomb-mediated silencing and DNA methylation to CTBP2 inactivation in MM. Notably, inhibitors of Enhance of zeste homolog 2 (EZH2), histone deacetylase (HDACs) and DNA methyltransferase (DNMTs) currently under evaluation in clinical trials were effective in restoring CTBP2 expression in MM. Our findings indicated that loss of CTBP2 plays an essential role in myelomagenesis and decipher an additional mechanistic link on MYC-IRF4 dysregulation in MM. We envision that identification of novel critical regulators would facilitate the development of selective and effective approaches for treating this MYC/IRF4-addicted malignancy.
Project description:Multiple myeloma (MM) is an incurable malignancy of plasma cells that exploits transcriptional networks underpinning normal plasma cell biology to drive malignant growth and survival. The transcription factor IRF4 serves as the principal architect of plasma cell identity, and MM cells are addicted to IRF4 expression for their survival. To discover unique molecular vulnerabilities in MM, we employ a multi-omics approach integrating functional genomics screening, spatial-proteomics, and global chromatin mapping. We find that ARID1A, a member of the SWI/SNF chromatin remodeling complex, is both required for IRF4 expression and functionally associated with IRF4 protein on chromatin. Conditional deletion of Arid1a in activated murine B cells thwarts subsequent plasma cell differentiation by disrupting IRF4-dependent transcriptional networks, thus defining ARID1A as a novel plasma cell vulnerability. Targeting ARID1A-dependent SWI/SNF activity via SMARCA2/4 inhibition induces a rapid loss of IRF4-target gene expression and quenches global oncogenic amplification of gene expression driven by MYC, resulting in profound toxicity to MM cells. Notably, SWI/SNF-dependent genes are upregulated in MM patients with aggressive disease, and SMARCA2/4 inhibitors retain their activity in immunomodulatory drug (IMiD)-resistant MM cells. To fully harness the potential of these drugs, we use combinatorial drug screens to uncover profound synergistic toxicity between SMARCA2/4 and MEK inhibitors. Thus, targeting SWI/SNF activity potently represses an IRF4-MYC feed forward loop and provides a feasible path forward to effectively treat this incurable disease.
Project description:Multiple myeloma (MM) is an incurable malignancy of plasma cells that exploits transcriptional networks underpinning normal plasma cell biology to drive malignant growth and survival. The transcription factor IRF4 serves as the principal architect of plasma cell identity, and MM cells are addicted to IRF4 expression for their survival. To discover unique molecular vulnerabilities in MM, we employ a multi-omics approach integrating functional genomics screening, spatial-proteomics, and global chromatin mapping. We find that ARID1A, a member of the SWI/SNF chromatin remodeling complex, is both required for IRF4 expression and functionally associated with IRF4 protein on chromatin. Conditional deletion of Arid1a in activated murine B cells thwarts subsequent plasma cell differentiation by disrupting IRF4-dependent transcriptional networks, thus defining ARID1A as a novel plasma cell vulnerability. Targeting ARID1A-dependent SWI/SNF activity via SMARCA2/4 inhibition induces a rapid loss of IRF4-target gene expression and quenches global oncogenic amplification of gene expression driven by MYC, resulting in profound toxicity to MM cells. Notably, SWI/SNF-dependent genes are upregulated in MM patients with aggressive disease, and SMARCA2/4 inhibitors retain their activity in immunomodulatory drug (IMiD)-resistant MM cells. To fully harness the potential of these drugs, we use combinatorial drug screens to uncover profound synergistic toxicity between SMARCA2/4 and MEK inhibitors. Thus, targeting SWI/SNF activity potently represses an IRF4-MYC feed forward loop and provides a feasible path forward to effectively treat this incurable disease.
Project description:Multiple myeloma (MM) is an incurable malignancy of plasma cells that exploits transcriptional networks underpinning normal plasma cell biology to drive malignant growth and survival. The transcription factor IRF4 serves as the principal architect of plasma cell identity, and MM cells are addicted to IRF4 expression for their survival. To discover unique molecular vulnerabilities in MM, we employ a multi-omics approach integrating functional genomics screening, spatial-proteomics, and global chromatin mapping. We find that ARID1A, a member of the SWI/SNF chromatin remodeling complex, is both required for IRF4 expression and functionally associated with IRF4 protein on chromatin. Conditional deletion of Arid1a in activated murine B cells thwarts subsequent plasma cell differentiation by disrupting IRF4-dependent transcriptional networks, thus defining ARID1A as a novel plasma cell vulnerability. Targeting ARID1A-dependent SWI/SNF activity via SMARCA2/4 inhibition induces a rapid loss of IRF4-target gene expression and quenches global oncogenic amplification of gene expression driven by MYC, resulting in profound toxicity to MM cells. Notably, SWI/SNF-dependent genes are upregulated in MM patients with aggressive disease, and SMARCA2/4 inhibitors retain their activity in immunomodulatory drug (IMiD)-resistant MM cells. To fully harness the potential of these drugs, we use combinatorial drug screens to uncover profound synergistic toxicity between SMARCA2/4 and MEK inhibitors. Thus, targeting SWI/SNF activity potently represses an IRF4-MYC feed forward loop and provides a feasible path forward to effectively treat this incurable disease.
Project description:Multiple myeloma (MM) is an incurable malignancy of plasma cells that exploits transcriptional networks underpinning normal plasma cell biology to drive malignant growth and survival. The transcription factor IRF4 serves as the principal architect of plasma cell identity, and MM cells are addicted to IRF4 expression for their survival. To discover unique molecular vulnerabilities in MM, we employ a multi-omics approach integrating functional genomics screening, spatial-proteomics, and global chromatin mapping. We find that ARID1A, a member of the SWI/SNF chromatin remodeling complex, is both required for IRF4 expression and functionally associated with IRF4 protein on chromatin. Conditional deletion of Arid1a in activated murine B cells thwarts subsequent plasma cell differentiation by disrupting IRF4-dependent transcriptional networks, thus defining ARID1A as a novel plasma cell vulnerability. Targeting ARID1A-dependent SWI/SNF activity via SMARCA2/4 inhibition induces a rapid loss of IRF4-target gene expression and quenches global oncogenic amplification of gene expression driven by MYC, resulting in profound toxicity to MM cells. Notably, SWI/SNF-dependent genes are upregulated in MM patients with aggressive disease, and SMARCA2/4 inhibitors retain their activity in immunomodulatory drug (IMiD)-resistant MM cells. To fully harness the potential of these drugs, we use combinatorial drug screens to uncover profound synergistic toxicity between SMARCA2/4 and MEK inhibitors. Thus, targeting SWI/SNF activity potently represses an IRF4-MYC feed forward loop and provides a feasible path forward to effectively treat this incurable disease.
Project description:Multiple myeloma (MM) is an incurable malignancy of plasma cells that exploits transcriptional networks underpinning normal plasma cell biology to drive malignant growth and survival. The transcription factor IRF4 serves as the principal architect of plasma cell identity, and MM cells are addicted to IRF4 expression for their survival. To discover unique molecular vulnerabilities in MM, we employ a multi-omics approach integrating functional genomics screening, spatial-proteomics, and global chromatin mapping. We find that ARID1A, a member of the SWI/SNF chromatin remodeling complex, is both required for IRF4 expression and functionally associated with IRF4 protein on chromatin. Conditional deletion of Arid1a in activated murine B cells thwarts subsequent plasma cell differentiation by disrupting IRF4-dependent transcriptional networks, thus defining ARID1A as a novel plasma cell vulnerability. Targeting ARID1A-dependent SWI/SNF activity via SMARCA2/4 inhibition induces a rapid loss of IRF4-target gene expression and quenches global oncogenic amplification of gene expression driven by MYC, resulting in profound toxicity to MM cells. Notably, SWI/SNF-dependent genes are upregulated in MM patients with aggressive disease, and SMARCA2/4 inhibitors retain their activity in immunomodulatory drug (IMiD)-resistant MM cells. To fully harness the potential of these drugs, we use combinatorial drug screens to uncover profound synergistic toxicity between SMARCA2/4 and MEK inhibitors. Thus, targeting SWI/SNF activity potently represses an IRF4-MYC feed forward loop and provides a feasible path forward to effectively treat this incurable disease.
Project description:Multiple myeloma (MM) is an incurable malignancy of plasma cells that exploits transcriptional networks underpinning normal plasma cell biology to drive malignant growth and survival. The transcription factor IRF4 serves as the principal architect of plasma cell identity, and MM cells are addicted to IRF4 expression for their survival. To discover unique molecular vulnerabilities in MM, we employ a multi-omics approach integrating functional genomics screening, spatial-proteomics, and global chromatin mapping. We find that ARID1A, a member of the SWI/SNF chromatin remodeling complex, is both required for IRF4 expression and functionally associated with IRF4 protein on chromatin. Conditional deletion of Arid1a in activated murine B cells thwarts subsequent plasma cell differentiation by disrupting IRF4-dependent transcriptional networks, thus defining ARID1A as a novel plasma cell vulnerability. Targeting ARID1A-dependent SWI/SNF activity via SMARCA2/4 inhibition induces a rapid loss of IRF4-target gene expression and quenches global oncogenic amplification of gene expression driven by MYC, resulting in profound toxicity to MM cells. Notably, SWI/SNF-dependent genes are upregulated in MM patients with aggressive disease, and SMARCA2/4 inhibitors retain their activity in immunomodulatory drug (IMiD)-resistant MM cells. To fully harness the potential of these drugs, we use combinatorial drug screens to uncover profound synergistic toxicity between SMARCA2/4 and MEK inhibitors. Thus, targeting SWI/SNF activity potently represses an IRF4-MYC feed forward loop and provides a feasible path forward to effectively treat this incurable disease.
Project description:Multiple myeloma (MM) is an incurable malignancy of plasma cells that exploits transcriptional networks underpinning normal plasma cell biology to drive malignant growth and survival. The transcription factor IRF4 serves as the principal architect of plasma cell identity, and MM cells are addicted to IRF4 expression for their survival. To discover unique molecular vulnerabilities in MM, we employ a multi-omics approach integrating functional genomics screening, spatial-proteomics, and global chromatin mapping. We find that ARID1A, a member of the SWI/SNF chromatin remodeling complex, is both required for IRF4 expression and functionally associated with IRF4 protein on chromatin. Conditional deletion of Arid1a in activated murine B cells thwarts subsequent plasma cell differentiation by disrupting IRF4-dependent transcriptional networks, thus defining ARID1A as a novel plasma cell vulnerability. Targeting ARID1A-dependent SWI/SNF activity via SMARCA2/4 inhibition induces a rapid loss of IRF4-target gene expression and quenches global oncogenic amplification of gene expression driven by MYC, resulting in profound toxicity to MM cells. Notably, SWI/SNF-dependent genes are upregulated in MM patients with aggressive disease, and SMARCA2/4 inhibitors retain their activity in immunomodulatory drug (IMiD)-resistant MM cells. To fully harness the potential of these drugs, we use combinatorial drug screens to uncover profound synergistic toxicity between SMARCA2/4 and MEK inhibitors. Thus, targeting SWI/SNF activity potently represses an IRF4-MYC feed forward loop and provides a feasible path forward to effectively treat this incurable disease.
Project description:Multiple myeloma (MM) is a malignancy that is often driven by MYC and that is sustained by IRF4, which are upregulated by super-enhancers. IKZF1 and IKZF3 bind to super-enhancers and can be degraded using immunomodulatory imide drugs (IMiDs). Successful IMiD responses downregulate MYC and IRF4; however, this fails in IMiD-resistant cells. MYC and IRF4 downregulation can also be achieved in IMiD-resistant tumors using inhibitors of BET and EP300 transcriptional coactivator proteins; however, in vivo these drugs have a narrow therapeutic window. By combining IMiDs with EP300 inhibition, we demonstrate greater downregulation of MYC and IRF4, synergistic killing of myeloma in vitro and in vivo, and an increased therapeutic window. Interestingly, this potent combination failed where MYC and IRF4 expression was maintained by high levels of the AP-1 factor BATF. Our results identify an effective drug combination and a previously unrecognized mechanism of IMiD resistance.
Project description:Multiple myeloma (MM) is a malignancy that is often driven by MYC and that is sustained by IRF4, which are upregulated by super-enhancers. IKZF1 and IKZF3 bind to super-enhancers and can be degraded using immunomodulatory imide drugs (IMiDs). Successful IMiD responses downregulate MYC and IRF4; however, this fails in IMiD-resistant cells. MYC and IRF4 downregulation can also be achieved in IMiD-resistant tumors using inhibitors of BET and EP300 transcriptional coactivator proteins; however, in vivo these drugs have a narrow therapeutic window. By combining IMiDs with EP300 inhibition, we demonstrate greater downregulation of MYC and IRF4, synergistic killing of myeloma in vitro and in vivo, and an increased therapeutic window. Interestingly, this potent combination failed where MYC and IRF4 expression was maintained by high levels of the AP-1 factor BATF. Our results identify an effective drug combination and a previously unrecognized mechanism of IMiD resistance.
Project description:Multiple myeloma (MM) is a malignancy that is often driven by MYC and that is sustained by IRF4, which are upregulated by super-enhancers. IKZF1 and IKZF3 bind to super-enhancers and can be degraded using immunomodulatory imide drugs (IMiDs). Successful IMiD responses downregulate MYC and IRF4; however, this fails in IMiD-resistant cells. MYC and IRF4 downregulation can also be achieved in IMiD-resistant tumors using inhibitors of BET and EP300 transcriptional coactivator proteins; however, in vivo these drugs have a narrow therapeutic window. By combining IMiDs with EP300 inhibition, we demonstrate greater downregulation of MYC and IRF4, synergistic killing of myeloma in vitro and in vivo, and an increased therapeutic window. Interestingly, this potent combination failed where MYC and IRF4 expression was maintained by high levels of the AP-1 factor BATF. Our results identify an effective drug combination and a previously unrecognized mechanism of IMiD resistance.