Project description:Comparison of t(11;18)-positive MALT lymphoma to t(11;18)-negative MALT lymphoma, with a special focus on the NF-KB pathway and it's targets 8 t(11;18)-negative and 6 t(11;18)-positive cases of MALT lymphoma, as well as six spleen control samples (1 mix of spleens and 5 singular spleen samples)
Project description:21 Tissue samples of gastric MALT lymphoma were compared by cDNA microarray studies with chronic gastritis tissues from the same patient. From each patient, multiple mucosal biopsies of the stomach were taken both from i) the macroscopically infiltrated area and ii) distant from the lymphoma. For conventional histological examination, biopsies taken from the same areas were formalin fixed, embedded in paraffin and reviewed by a central pathologist. All lymphoma samples were tested by RT-PCR for t(11;18). None of them was t(11;18) positive.
Project description:MALT lymphoma is characterized by t(11;18)(q21;q21)/API2-MALT1, t(1;14)(p22;q32)/BCL10-IGH and t(14;18)(q32;q21)/IGH-MALT1, which commonly activate the NF-κB pathway. Gastric MALT lymphomas harboring such translocation do not respond to H. pylori eradication, while those without translocation can be cured by antibiotics. To understand the molecular mechanism of these different MALT lymphoma subgroups, we performed gene expression profiling analysis of 24 MALT lymphomas (15 translocation-positive, 9 translocation-negative). Gene set enrichment analysis (GSEA) of the NF-κB target genes and 4394 additional gene sets covering various cellular pathways, biological processes and molecular functions showed that translocation-positive MALT lymphomas are characterized by an enhanced expression of NF-κB target genes, particularly TLR6, CCR2, CD69 and BCL2, while translocation-negative cases were featured by active inflammatory and immune responses, such as IL8, CD86, CD28 and ICOS.
Project description:The molecular pathogenesis of orbital lymphoproliferative disorders, such as immunoglobulin G4-related ophthalmic disease (IgG4-ROD) and orbital mucosa-associated lymphoid tissue (MALT) lymphoma, remains essentially unknown. Differentiation between the two disorders, which is important since work-up and treatment can vary greatly, is often challenging due to the lack of specific biomarkers. Although miRNAs play an important role in the regulation of carcinogenesis and inflammation, the relationship between miRNA and orbital lymphoproliferative diseases remains unknown. A comprehensive analysis of 2,565 miRNAs was performed in biopsied specimens and serum of 17 cases with IgG4-ROD and 21 cases with orbital MALT lymphoma. We identified specific miRNA signatures, their miRNA target pathways, and network analysis associated with IgG4-ROD and orbital MALT lymphoma. Machine-learning analysis identified miR-202-3p and miR-7112-3p as the best discriminators of IgG4-ROD and orbital MALT lymphoma, respectively. In the tissue pathway, Longevity regulating pathway in IgG4-ROD and MAPK signaling pathway in orbital MALT lymphoma were most enriched by downregulated miRNAs. This is the first evidence of the miRNA profile in biopsied specimens and serum of patients with IgG4-ROD and orbital MALT lymphoma. These data will be useful for developing diagnostic and therapeutic interventions, as well as elucidating of these disorders.
Project description:Comparison of gene expression profiling analysis of bone marrow isolated CD34+ cells from patients with MALT lymphoma vs. healthy individuals revealed a large number of differentially expressed genes that included NF-kB target genes, genes involved in inflamatory signalling and immunoglobulin genes, suggesting an early lymphoid B-cell priming. Chromosomal translocations involving MALT1 gene are hallmarks of mucosa-associated lymphoid tissue (MALT) lymphoma. However, targeting these translocations to mouse B-cells has failed to reproduce human disease. Here, we induced MALT1 expression in mouse Sca1+Lin- hematopoietic stem/progenitor cells (HS/PCs), leading to the development of tumors recapitulating the clinical, histopathological and molecular features of human MALT lymphomas. Ablation of the p53 gene induced transformation of MALT lymphoma to diffuse large-cell lymphoma of activated B-cell type (ABC-DLBCL). Human CD34+ cells isolated from MALT lymphoma patients displayed an abnormal transcriptional program that was shared by MALT lymphoma cells, transgenic mouse Sca1+Lin- cells and Sca1-MALT1-induced lymphomas. Our study shows that MALT lymphoma can be modeled in mice by targeting MALT1 oncogene to HS/PCs.
Project description:Molecular pathways activated in MALT lymphoma are not well defined. In this study, we perform gene expression profiling on 35 pulmonary MALT lymphoma using fresh frozen biopsy samples Keywords: Cell type analysis and disease state analysis
Project description:To identify key tumour supressor miRNAs involed in MALT lymphoma pathogenesis Gastric mucosa-associated lymphoid tissue lymphoma develops in the chronically inflamed mucosa of Helicobacter pylori-infected patients. MicroRNA expression profiling of human MALT lymphoma revealed a 10-fold down-regulation of miR-203, which resulted from promoter hypermethylation and coincided with the dysregulation of the miR-203 target ABL1. Demethylating treatment of lymphoma B-cells led to an increase in miR-203 expression and concomitant ABL1 down-regulation. The lentiviral delivery of miR-203, as well as treatment with various ABL inhibitors, prevented primary MALT lymphoma cell proliferation in vitro. Finally, the treatment of tumor-bearing mice with imatinib induced MALT lymphoma regression in vivo. Our results show that MALT lymphomagenesis is epigenetically induced by miR-203 promoter methylation and identify ABL1 as a novel target for the treatment of this malignancy.
Project description:MALT lymphoma is characterized by t(11;18)(q21;q21)/API2-MALT1, t(1;14)(p22;q32)/BCL10-IGH and t(14;18)(q32;q21)/IGH-MALT1, which commonly activate the NF-κB pathway. Gastric MALT lymphomas harboring such translocation do not respond to H. pylori eradication, while those without translocation can be cured by antibiotics. To understand the molecular mechanism of these different MALT lymphoma subgroups, we performed gene expression profiling analysis of 24 MALT lymphomas (15 translocation-positive, 9 translocation-negative). Gene set enrichment analysis (GSEA) of the NF-κB target genes and 4394 additional gene sets covering various cellular pathways, biological processes and molecular functions showed that translocation-positive MALT lymphomas are characterized by an enhanced expression of NF-κB target genes, particularly TLR6, CCR2, CD69 and BCL2, while translocation-negative cases were featured by active inflammatory and immune responses, such as IL8, CD86, CD28 and ICOS. Separate analyses of the genes differentially expressed between translocation-positive and negative cases and measurement of gene ontology term in these differentially expressed genes by hypergeometric test reinforced the above findings by GSEA. Finally, expression of TLR6, in the presence of TLR2, enhanced both API2-MALT1 and BCL10 mediated NF-κB activation in vitro. Our findings provide novel insights into the molecular mechanism of MALT lymphomas with and without translocation, potentially explaining their different clinical behaviors. This study compares MALT with other lymphomas, namely follicular lymphomas (FL) and mantle cell lymphomas (MCL), and investigates the molecular mechanisms of the lymphomagenesis between translocation-positive versus -negative MALT lymphoma cases in order to derive the pathways leading to MALT lymphoma pathogenesis. The study uses fresh frozen tissues from 24 MALT lymphoma cases with 7 FL and 7 MCL. Samples were run on the HG-U133A, HG-U133B, and HG-U133 plus2 GeneChips.
Project description:MALT lymphoma is characterized by t(11;18)(q21;q21)/API2-MALT1, t(1;14)(p22;q32)/BCL10-IGH and t(14;18)(q32;q21)/IGH-MALT1, which commonly activate the NF-κB pathway. Gastric MALT lymphomas harboring such translocation do not respond to H. pylori eradication, while those without translocation can be cured by antibiotics. To understand the molecular mechanism of these different MALT lymphoma subgroups, we performed gene expression profiling analysis of 24 MALT lymphomas (15 translocation-positive, 9 translocation-negative). Gene set enrichment analysis (GSEA) of the NF-κB target genes and 4394 additional gene sets covering various cellular pathways, biological processes and molecular functions showed that translocation-positive MALT lymphomas are characterized by an enhanced expression of NF-κB target genes, particularly TLR6, CCR2, CD69 and BCL2, while translocation-negative cases were featured by active inflammatory and immune responses, such as IL8, CD86, CD28 and ICOS. Separate analyses of the genes differentially expressed between translocation-positive and negative cases and measurement of gene ontology term in these differentially expressed genes by hypergeometric test reinforced the above findings by GSEA. Finally, expression of TLR6, in the presence of TLR2, enhanced both API2-MALT1 and BCL10 mediated NF-κB activation in vitro. Our findings provide novel insights into the molecular mechanism of MALT lymphomas with and without translocation, potentially explaining their different clinical behaviors. This study compares MALT with other lymphomas namely follicular and mantle cell lymphomas, and investigates the molecular mechanisms of the lymphomagenesis between translocation positive versus negative MALT lymphoma cases in order to derive the pathways leading to MALT lymphoma pathogenesis using GSEA, GO, dynamic pathway analysis as well as other bioinformatics analysis. Samples were run on the Affymetrix HG-U133A and HG-U133 plus2 GeneChips.
Project description:MALT lymphoma is characterized by t(11;18)(q21;q21)/API2-MALT1, t(1;14)(p22;q32)/BCL10-IGH and t(14;18)(q32;q21)/IGH-MALT1, which commonly activate the NF-κB pathway. Gastric MALT lymphomas harboring such translocation do not respond to H. pylori eradication, while those without translocation can be cured by antibiotics. To understand the molecular mechanism of these different MALT lymphoma subgroups, we performed gene expression profiling analysis of 24 MALT lymphomas (15 translocation-positive, 9 translocation-negative). Gene set enrichment analysis (GSEA) of the NF-κB target genes and 4394 additional gene sets covering various cellular pathways, biological processes and molecular functions showed that translocation-positive MALT lymphomas are characterized by an enhanced expression of NF-κB target genes, particularly TLR6, CCR2, CD69 and BCL2, while translocation-negative cases were featured by active inflammatory and immune responses, such as IL8, CD86, CD28 and ICOS. Separate analyses of the genes differentially expressed between translocation-positive and negative cases and measurement of gene ontology term in these differentially expressed genes by hypergeometric test reinforced the above findings by GSEA. Finally, expression of TLR6, in the presence of TLR2, enhanced both API2-MALT1 and BCL10 mediated NF-κB activation in vitro. Our findings provide novel insights into the molecular mechanism of MALT lymphomas with and without translocation, potentially explaining their different clinical behaviors.