Succinate dehydrogenase (SDH)-Complex II regulates skeletal muscle cellular respiration and fatigue but not muscle mass in genetically induced pulmonary emphysema [3 wk]
Ontology highlight
ABSTRACT: Skeletal muscle wasting and reduced oxidative capacity coexist in patients with COPD/pulmonary emphysema and are independently associated with higher mortality. Whether reduced respiration contributes to muscle atrophy in that setting remains unknown. We have previously shown that a mouse with genetically induced COPD/pulmonary emphysema recapitulates muscle dysfunction features present in patients’ muscles, including reduced expression and activity of succinate dehydrogenase (SDH), which are partially reversed by genetic gain of SDH function. Previous research suggests that succinate accumulation, a by-product of SDH inhibition, can increase respiratory capacity of skeletal muscle. Here, we generated an inducible, muscle-specific SDH-C knockout mouse which demonstrates lower mitochondrial oxygen consumption and oxidative fibers’ contractility, associated with overall reduced exercise endurance. These changes are partially offset by mitochondrial complex I-dependent respiration, a respiratory pattern replicated in the muscles from the COPD/pulmonary emphysema genetic model. Moreover, while mice skeletal muscle SDH-C knockout causes an early succinate accumulation associated with a downregulated transcriptome, these changes do not correlate with the proteomic landscape; and animals muscle mass, fiber-type composition, and dry body mass constituents remain unaltered. We preset the first conditional, skeletal muscle-specific SDH-C knockout animal and demonstrate that while SDH-C regulates fibers respiration in genetically induced pulmonary emphysema, it does not control muscle mass.
Project description:Skeletal muscle wasting and reduced oxidative capacity coexist in patients with COPD/pulmonary emphysema and are independently associated with higher mortality. Whether reduced respiration contributes to muscle atrophy in that setting remains unknown. We have previously shown that a mouse with genetically induced COPD/pulmonary emphysema recapitulates muscle dysfunction features present in patients’ muscles, including reduced expression and activity of succinate dehydrogenase (SDH), which are partially reversed by genetic gain of SDH function. Previous research suggests that succinate accumulation, a by-product of SDH inhibition, can increase respiratory capacity of skeletal muscle. Here, we generated an inducible, muscle-specific SDH-C knockout mouse which demonstrates lower mitochondrial oxygen consumption and oxidative fibers’ contractility, associated with overall reduced exercise endurance. These changes are partially offset by mitochondrial complex I-dependent respiration, a respiratory pattern replicated in the muscles from the COPD/pulmonary emphysema genetic model. Moreover, while mice skeletal muscle SDH-C knockout causes an early succinate accumulation associated with a downregulated transcriptome, these changes do not correlate with the proteomic landscape; and animals muscle mass, fiber-type composition, and dry body mass constituents remain unaltered. We preset the first conditional, skeletal muscle-specific SDH-C knockout animal and demonstrate that while SDH-C regulates fibers respiration in genetically induced pulmonary emphysema, it does not control muscle mass.
Project description:Succinate dehydrogenase (SDH)-Complex II regulates skeletal muscle cellular respiration and fatigue but not muscle mass in genetically induced pulmonary emphysema [3 wk]
Project description:Succinate dehydrogenase (SDH)-Complex II regulates skeletal muscle cellular respiration and fatigue but not muscle mass in genetically induced pulmonary emphysema [20 wk]
Project description:Patients with chronic obstructive pulmonary disease (COPD)-pulmonary emphysema often develop locomotor muscle dysfunction, which is independently associated with disability and higher mortality in that population. Muscle dysfunction entails reduced muscle mass and force-generation capacity, which are influenced by fibers integrity. Myogenesis, which is muscle turnover driven by progenitor cells such as satellite cells, contributes to the maintenance of muscle integrity in the context of organ development and injury-repair cycles. Injurious events crucially occur in COPD patients’ skeletal muscles in the setting of exacerbations and infections which lead to acute decompensations for limited periods of time after which, patients typically fail to recover the baseline status they had before the acute event. Autophagy, which is dysregulated in muscles from COPD patients, is a key regulator of satellite cells activation and myogenesis, yet very little research has so far investigated the mechanistic role of autophagy dysregulation in COPD muscles. Using a genetically inducible murine model of COPD-driven muscle dysfunction and confirmed with a second genetic animal model, we found a significant myogenic dysfunction associated with a reduced proliferative capacity of freshly isolated satellite cells. Transplantation experiments followed by lineage tracing suggest that an intrinsic defect in satellite cells, and not in the COPD environment, plays a dominant role in the observed myogenic dysfunction. RNA sequencing analysis of freshly isolated satellite cells suggests cell cycle and autophagy dysregulation, which is confirmed by a direct observation of COPD mice satellite cells fluorescent-tracked autophagosome formation. Moreover, spermidine-induced autophagy stimulation leads to improved satellite cells autophagosome turnover, replication rate and myogenesis. Our data suggests that pulmonary emphysema causes a disrupted myogenesis, which could be improved with stimulation of autophagy and satellite cells activation, leading to an attenuated muscle dysfunction in this context.
Project description:Study the training exercise effects in chronic obstructive pulmonary disease (COPD) patients and aged-matched healthy individuals. Skeletal muscle biopsies from 9 stable COPD patients with normal fat free mass index (FFMI, 21Kg/m2) (COPDN), 6 COPD patients with low FFMI (16Kg/m2) (COPL), and 12 healthy sedentary subjects (FFMI 21Kg/m2) before and after 8 weeks of a supervised endurance exercise program were analyzed.
Project description:Background; Mitochondrial respiration is an important and widely conserved cellular function in eukaryotic cells. The succinate dehydrogenase complex (SDH-complex) plays an important role in respiration as it connects the mitochondrial respiratory chain to the tricarboxylic acid (TCA) cycle where it catalyzes the oxidation of succinate to fumarate. Cellular response to the SDH-complex dysfunction (i.e. impaired respiration) thus has important implications not only for biotechnological applications but also for understanding cellular physiology underlying metabolic diseases such as diabetes. We therefore explored the physiological and transcriptional response of Saccharomyces cerevisiae to the deletion of SDH3, that codes for an essential subunit of the SDH-complex. Results; Although the SDH-complex has no direct role in transcriptional regulation and the flux through the corresponding reaction under the studied conditions is very low, deletion of SDH3 resulted in significant changes in the expression of several genes involved in various cellular processes ranging from metabolism to the cell-cycle. By using various bioinformatics tools we explored the organization of these transcriptional changes in the metabolic and other cellular functional interaction networks. Conclusions; Our results show that the transcriptional regulatory response resulting from the impaired respiratory function is linked to several different parts of the metabolism, including fatty acid and sterol metabolism. Experiment Overall Design: Two replicates for sdh3 deletion mutants. Reference strain transcriptome data: Westergaard SL et al., FEMS Yeast Res 2004, 5: 193-204.
Project description:Macrophage-mediated inflammation drives various lung diseases, including chronic obstructive pulmonary disease (COPD). COPD macrophages have dysfunctional mitochondrial metabolism and function which lead to a chronic inflammatory lung environment. However, the factors regulating this altered metabolism have not been elucidated. Adenine nucleotide translocase 1 (ANT1) is a mitochondrial ATP transporter critical to mitochondrial metabolism. We demonstrate that human alveolar macrophages from patients with moderate COPD (GOLD stage 2) have reduced ANT1 expression while macrophages from very severe COPD (GOLD stage 4) has elevated ANT1 compared to normal control subjects. Ant1-deficient mice were protected against cigarette smoke (CS)-induced emphysema with failure of recruited immune cells to migrate into alveoli. Ant1-null alveolar macrophages had reduced ATP production and mitochondrial respiration, upregulated fewer inflammatory pathways after CS and reduced migratory capacity. Conditional Ant1 knockout in Cx3cr1-positive monocytes and adoptive transfer of Ant1-deficient bone marrow into CS-treated mice phenocopied the migratory defect in the lung. Our data indicate that ANT1 is a critical regulator of lung macrophage inflammatory signaling and CS-triggered cell migration in the lung, suggesting that metabolic modulation may be a promising therapeutic avenue for COPD
Project description:Macrophage-mediated inflammation drives various lung diseases, including chronic obstructive pulmonary disease (COPD). COPD macrophages have dysfunctional mitochondrial metabolism and function which lead to a chronic inflammatory lung environment. However, the factors regulating this altered metabolism have not been elucidated. Adenine nucleotide translocase 1 (ANT1) is a mitochondrial ATP transporter critical to mitochondrial metabolism. We demonstrate that human alveolar macrophages from patients with moderate COPD (GOLD stage 2) have reduced ANT1 expression while macrophages from very severe COPD (GOLD stage 4) has elevated ANT1 compared to normal control subjects. Ant1-deficient mice were protected against cigarette smoke (CS)-induced emphysema with failure of recruited immune cells to migrate into alveoli. Ant1-null alveolar macrophages had reduced ATP production and mitochondrial respiration, upregulated fewer inflammatory pathways after CS and reduced migratory capacity. Conditional Ant1 knockout in Cx3cr1-positive monocytes and adoptive transfer of Ant1-deficient bone marrow into CS-treated mice phenocopied the migratory defect in the lung. Our data indicate that ANT1 is a critical regulator of lung macrophage inflammatory signaling and CS-triggered cell migration in the lung, suggesting that metabolic modulation may be a promising therapeutic avenue for COPD
Project description:Study the training exercise effects in chronic obstructive pulmonary disease (COPD) patients and aged-matched healthy individuals. Skeletal muscle biopsies from 9 stable COPD patients with normal fat free mass index (FFMI, 21Kg/m2) (COPDN), 6 COPD patients with low FFMI (16Kg/m2) (COPL), and 12 healthy sedentary subjects (FFMI 21Kg/m2) before and after 8 weeks of a supervised endurance exercise program were analyzed. Samples were collected from open biopsies from the musculus vastus lateralis of COPD patients and healthy individuals before and after 8 weeks of exercise training. Constant-work rate exercise at 70% of pre-training Watts peak (Wpeak) (CardiO2 cycle Medical Graphics Corporation, USA) was carried out before and after 8 weeks of supervised interval training with a cycloergometer until pre-training endurance time exhaustion. Measurements before and after training were obtained at isowork-rate and iso-time.
Project description:Chronic obstructive pulmonary disease (COPD) is a complex pulmonary disorder primarily induced by cigarette smoking, and characterized by persistent airflow limitation. The mouse represents an important model for studying COPD pathologies such as lung emphysema. In this respect, a number of mechanistic studies have been performed, however the approaches were mostly focused on single gene analysis or characterization of cellular, inflammatory or histopathological changes without attempting a more comprehensive interpretation. In the present study we aimed at applying systems biology approach to identify genome-wide molecular mechanisms indicative of cigarette smoke (CS)-induced lung emphysema. The lung transcriptomes of five mouse models (C57BL/6, ApoE-/-, A/J, CD1, and Nrf2-/-), that are known to be susceptible to CS-induced emphysema development, were analyzed following prolonged (5-6 months) CS exposure. The investigation resulted in the confirmation of many existing mechanistic explanations underlying smoke-induced lung emphysema, including increased transcriptional activity of NF-?B, and increased levels of TNF-a, IFN-g, and IL-1b. More importantly, we predicted mechanisms without currently well-documented roles, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1 and N-cor, and increased IL-17 cytokine expression, and reduced protein expression of ITGB6 and CFTR. We also corroborated, by using targeted proteomic approaches, several predictions such as reduced expression of ITGB6 and increased expression of BRCA1, C/EBPs, PU.1, TNF-a, IL-1b or CSF2. We believe this study will provide more insights into better understanding of CS-induced molecular processes underlying emphysema development in mice that may eventually be relevant in humans.