Project description:This SuperSeries is composed of the following subset Series: GSE25774: Genome-wide analysis of Tdrd7 knockdown in lens epithelial-derived cell line 21EM15 GSE25775: Genome-wide analysis of 4-day old (P4) Tdrd7 null mouse lens GSE25776: Genome-wide analysis of 1 month old (P30) Tdrd7 null mouse lens Refer to individual Series
Project description:The precise transcriptional regulation of gene expression is essential for vertebrate development, but the role of posttranscriptional regulatory mechanisms is less clear. Cytoplasmic RNA granules (RGs) function in the posttranscriptional control of gene expression, but the extent of RG involvement in organogenesis is unknown. We describe two human cases of pediatric cataract with loss-of-function mutations in TDRD7 and demonstrate that Tdrd7 nullizygosity in mouse causes cataracts, as well as glaucoma and an arrest in spermatogenesis. TDRD7 is a Tudor domain RNA binding protein that is expressed in lens fiber cells in distinct TDRD7-RGs that interact with STAU1-ribonucleoproteins (RNPs). TDRD7 coimmunoprecipitates with specific lens messenger RNAs (mRNAs) and is required for the posttranscriptional control of mRNAs that are critical to normal lens development and to RG function. These findings demonstrate a role for RGs in vertebrate organogenesis.
Project description:Anterior segment dysgenesis describes a group of heterogeneous developmental disorders that affect the anterior chamber of the eye and are associated with an increased risk of glaucoma. Here, we report homozygous mutations in peroxidasin (PXDN) in two consanguineous Pakistani families with congenital cataract-microcornea with mild to moderate corneal opacity and in a consanguineous Cambodian family with developmental glaucoma and severe corneal opacification. These results highlight the diverse ocular phenotypes caused by PXDN mutations, which are likely due to differences in genetic background and environmental factors. Peroxidasin is an extracellular matrix-associated protein with peroxidase catalytic activity, and we confirmed localization of the protein to the cornea and lens epithelial layers. Our findings imply that peroxidasin is essential for normal development of the anterior chamber of the eye, where it may have a structural role in supporting cornea and lens architecture as well as an enzymatic role as an antioxidant enzyme in protecting the lens, trabecular meshwork, and cornea against oxidative damage.