Transcriptomics

Dataset Information

0

Deciphering cell states and genealogies of human hematopoiesis with single-cell multi-omics [Crispr_Mouse_Batch2]


ABSTRACT: The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived hematopoietic stem cells (HSCs). Perturbations to this process underlie a diverse set of diseases, but the clonal contributions to human hematopoiesis and how this changes with age remain incompletely understood. While recent insights have emerged from barcoding studies in model systems, simultaneous detection of cell states and phylogenies from natural barcodes in humans has been challenging, which has limited the ability to explore functional differences between HSC clones. Here, we introduce an improved single-cell lineage tracing system based on deep detection of naturally-occurring mitochondrial DNA (mtDNA) mutations with simultaneous readout of transcriptional states and chromatin accessibility. We use this system to define the clonal architecture of HSCs, and map the physiological state and output of these clones. We uncover functional heterogeneity in HSC clones, which is stable over months and manifests as differences in total HSC output as well as biases toward the production of different mature blood and immune lineages. We also find that the diversity of HSC clones decreases dramatically with age leading to an oligoclonal structure with multiple distinct clonal expansions. Our study thus provides the first clonally-resolved and cell-state aware atlas of human hematopoiesis at single-cell resolution revealing an unappreciated functional diversity of human HSC clones both in young and aged individuals and more broadly paves the way for refined studies of clonal dynamics across a range of tissues in human health and disease.

ORGANISM(S): Mus musculus

PROVIDER: GSE259285 | GEO | 2024/02/26

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2024-02-26 | GSE259284 | GEO
2023-11-18 | GSE219167 | GEO
2023-11-18 | GSE219106 | GEO
2023-11-18 | GSE219057 | GEO
2024-03-09 | GSE261078 | GEO
2023-11-18 | GSE219014 | GEO
2023-11-18 | GSE219248 | GEO
1970-01-01 | MTBLS9914 | MetaboLights
2021-11-25 | GSE189406 | GEO
2022-05-25 | GSE203550 | GEO