Chromatin dynamics of Phytophthora during host infection [RNA-seq]
Ontology highlight
ABSTRACT: Dynamic regulation of silencing histone marks, specifically H3K9me3 and H3K27me3, provide effector gene expression plasticity, which enables adaptative responses to environmental fluctuations in plant fungal pathogens. It remains an unanswered question whether the epigenetic regulatory mechanisms governing gene expression during infection stages in Phytophthora are the same as in fungal pathogens. We performed chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) of three histone modifications, H3K4me3, H3K36me3, and H3K27me3 in P. sojae and P. infestans, encompassing both the mycelium stage, and infection stages (12h post-inoculation (hpi), and 24hpi in soybean, as well as 3dpi in potato respectively).Integrative analysis of ChIP-seq and RNA-seq data of mycelium and infection stages was performed.Overall, our work provides a comprehensive and detailed view of distinctive chromatin dynamic patterns during the infection stages of Phytophthora.
ORGANISM(S): Phytophthora sojae
PROVIDER: GSE260751 | GEO | 2024/12/18
REPOSITORIES: GEO
ACCESS DATA