Excitatory Neurons Derived from Human-Induced Pluripotent Stem Cells Show Transcriptomic Differences in Alzheimer’s Patients from Controls
Ontology highlight
ABSTRACT: The recent advances in creating pluripotent stem cells from somatic cells and differentiating them into a variety of cell types is allowing us to study them without the caveats associated with disease-related changes. We generated induced Pluripotent Stem Cells (iPSCs) and used lentiviral delivery to differentiate them into excitatory glutamatergic neurons, on which we performed RNA sequencing. We compared transcriptomes of cells derived from 7 Alzheimer’s disease (AD) and 6 control patients. We found that 621 genes show differences in expression levels at adjusted p < 0.05 between the case and control derived neurons. These genes show significant overlap and directional concordance with genes reported from a single-cell transcriptome study of AD patients; they include five genes implicated in AD from genome-wide association studies and they appear to be part of a larger functional network as indicated by an excess of interactions between them observed in the protein–protein interaction database STRING. Exploratory analysis with Uniform Manifold Approximation and Projection (UMAP) suggests distinct clusters of patients, based on gene expression, who may be clinically different. Our research outcomes will enable the precise identification of distinct biological subtypes among individuals with Alzheimer’s disease, facilitating the implementation of tailored precision medicine strategies.
ORGANISM(S): Homo sapiens
PROVIDER: GSE260873 | GEO | 2024/03/06
REPOSITORIES: GEO
ACCESS DATA