KDM5A epigenetically orchestrates MHC-I associated anti-tumor immunity of immunotherapy [DC RNA-seq]
Ontology highlight
ABSTRACT: Immune checkpoint blockade (ICB) therapy revolutionized cancer treatment, but many patients with impaired MHC-I expression remain refractory. Histone methylation was involved in anti-tumor immunity of ICB. However, the link between histone methylation and MHC-I regulation and the related mechanisms are poorly understood. Here we show that KDM5A, an H3K4 demethylase that is critical for MHC-I expression and associated antigen presentation capacity, induces robust immune response and enhances ICB efficacy. Mechanistically, KDM5A upregulates IFN-gamma/STAT1-mediated MHC-I expression via directly binding and suppressing Scos1 in tumor cells. The genes encoding the lysosomal cathepsins are recognized and up-regulated by KDM5A, resulting in enhanced antigen-presentation abilities of both tumor cells and dendritic cells. Furthermore, pharmacological enhancing KDM5A improves response to anti-PD-1 therapy. These investigations demonstrate that enhancing KDM5A triggers MHC-associated antigen presentation of both tumor cells and DCs simultaneously to boost antitumor immunity, thus represents a candidate ICB sensitizer.
ORGANISM(S): Mus musculus
PROVIDER: GSE260912 | GEO | 2024/03/31
REPOSITORIES: GEO
ACCESS DATA