Inflammatory milieu by crosstalk between podocytes and proximal tubular cells in type 2 diabetic kidney disease
Ontology highlight
ABSTRACT: Due to the limited availability of therapeutic agents for type 2 diabetic kidney disease (DKD), there is a need for further knowledge derived from experimental models and innovative techniques. In addressing this issue, single-cell RNA sequencing (scRNA-seq) has been exclusively applied to a genetically modified DKD model, but not an induced model representing type 2 DKD. Herein, we analyzed scRNA-seq and other experiments from an induced type 2 DKD model, and validated the results in human-derived biospecimens. The model was induced by combining a high-fat diet with streptozotocin to simulate induced type 2 DKD. scRNA-seq, histological, and flow cytometric analyses were conducted, and their results were compared with control mice. The findings were then applied to human kidneys exhibiting diabetic glomerulosclerosis associated with type 2 diabetes.
Project description:While blocking the renin angiotensin aldosterone system (RAAS) has been the main therapeutic strategy to control diabetic kidney disease (DKD) for many years, 25-30% of diabetic patients still develop the disease. In the present work we adopted a system biology strategy to analyze glomerular protein signatures to identify drugs with potential therapeutic properties in DKD acting through a RAAS-independent mechanism. Glomeruli were isolated from wild type and type 1 diabetic mice (Ins2Akita) treated or not with the angiotensin-converting enzyme inhibitor (ACEi) ramipril. Ramipril efficiently reduced the urinary albumin/creatine ratio (ACR) of Ins2Akita mice without modifying DKD-associated renal-injuries. Large scale quantitative proteomics was used to identify the DKD-associated glomerular proteins (DKD-GPs) that were ramipril-insensitive (RI-DKD-GPs). We then applied an in silico drug repurposing approach using a pattern-matching algorithm (Connectivity Mapping) to compare the RI-DKD-GPs’s signature with a collection of thousands of transcriptional signatures of bioactive compounds. The sesquiterpene lactone parthelonide was identified as one of the top compounds predicted to reverse the RI-DKD-GPs’s signature. Treatment of diabetic Ins2Akita mice with dimethylaminoparthenolide (DMAPT), a water soluble analogue of parthenolide, significantly reduced urinary ACR. However, in contrast to ramipril, DMAPT also significantly reduced glomerulosclerosis and tubulointerstitial fibrosis. Using a system biology approach we identified DMAPT, as a compound with a potential add-on value to standard-of-care ACEi-treatment in DKD.
Project description:We identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli; 330 probesets were commonly differentially expressed in both compartments. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in an additional set of DKD samples. Affymetrix expression arrays were used to identify differentially regulated transcripts in 44 microdissected human kidney samples. Stringent statistical analysis using the Benjamini_Hochberg corrected 2-tailed t-test was used to identify differentially expressed transcripts in control and diseased glomeruli and tubuli. This Series includes DKD and control glomeruli samples.
Project description:We identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli; 330 probesets were commonly differentially expressed in both compartments. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in an additional set of DKD samples. Affymetrix expression arrays were used to identify differentially regulated transcripts in 44 microdissected human kidney samples. Stringent statistical analysis using the Benjamini_Hochberg corrected 2-tailed t-test was used to identify differentially expressed transcripts in control and diseased glomeruli and tubuli. This Series includes DKD and control tubuli samples.
Project description:We identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli; 330 probesets were commonly differentially expressed in both compartments. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in an additional set of DKD samples.
Project description:We identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli; 330 probesets were commonly differentially expressed in both compartments. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in an additional set of DKD samples.
Project description:We identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli; 330 probesets were commonly differentially expressed in both compartments. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in an additional set of DKD samples.
Project description:We identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli; 330 probesets were commonly differentially expressed in both compartments. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in an additional set of DKD samples. Affymetrix expression arrays were used to identify differentially regulated transcripts in 44 microdissected human kidney samples. Stringent statistical analysis using the Benjamini_Hochberg corrected 2-tailed t-test was used to identify differentially expressed transcripts in control and diseased glomeruli and tubuli. This Series includes control glomeruli and tubuli samples.
Project description:Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are common complications of type 1 (T1D) and type 2 (T2D) diabetes. However, the mechanisms underlying the development and progression of these complications are unclear. Thus, the goal of the current study was to use system biology approaches to examine DKD and DPN pathogenesis in T1D and T2D mouse models on the same genetic background. We optimized a streptozotocin-induced db/+ murine model of T1D and compared it to our established db/db T2D mouse model of the same C57BLKS/J background and confirmed both develop DKD and DPN. Transcriptomic data from glomeruli and sciatic nerve tissue from T1D and T2D mice were analyzed by self-organizing map and differential gene expression analysis followed by functional enrichment. Consistent with prior literature, pathways related to immune function and inflammation were dysregulated in both DKD and DPN in T1D and T2D mice. The gene-level analysis identified a high degree of concordance in DEGs in both DKD and DPN and across diabetes type, suggesting genetic background influences diabetic complications. These findings offer new insight as the influence of genetic background on DPN in mouse models has not been well defined. Collectively, these findings support the role of inflammation and genetic background in complications of both T1D and T2D.
Project description:Overexpression of glomerular JAK2 mRNA specifically in glomerular podocytes of 129S6 mice led to significant increases in albuminuria, mesangial expansion, glomerulosclerosis, glomerular fibronectin accumulation, and glomerular basement membrane thickening as well as a significant reduction in podocyte density in diabetic mice. Treatment with a specific JAK1/2 inhibitor partly reversed the major phenotypic changes of DKD
Project description:Analysis of gene expression changes in differentiated human podocytes treated with the serum from patients with (DKD+) or without (DKD-) diabetic kidney disease when compared to normal subjects (C). The hypothesis is that the three groups can be distinghed by their differential gene expression pattern. The results obtained revealed important information regarding differences in gene expression in human podocytes treated with the serum from patients with (DKD+) or without (DKD-) diabetic kidney disease when compared to normal subjects (C). Human podocytes were contacted with the serum from patients with diabetes and kidney disease (DKD+) or without kidney disease (DKD-) and compared to normal human podocytes contacted with serum from patients without diabetes (C).