Prior vaccination prevents overactivation of innate immune responses during COVID-19 breakthrough infection
Ontology highlight
ABSTRACT: At this stage in the COVID-19 pandemic, most infections are 'breakthrough' infections that occur in individuals with prior immunity to SARS-CoV-2 through infection or vaccination. Understanding both innate and adaptive immune induction in the setting of breakthrough infection is critical to refining vaccine strategies to ensure long-term efficacy against emerging variants, yet existing studies have primarily focused on adaptive immune responses. Here, we performed single-cell transcriptomic, proteomic, and functional profiling of innate and adaptive immunity during primary and breakthrough COVID-19 infections by comparing immune responses between unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave. Breakthrough infections were characterized by a significantly less activated transcriptomic profile in CD56dim NK cells and monocytes, with induction of pathways limiting NK cell proliferation and monocyte migratory potential. Furthermore, we observed a female-specific trend of increased transcriptomic activation of CD16+ monocytes and type-2 conventional dendritic cells (cDC2s) during breakthrough infections. Despite these differences, antibody-dependent cellular cytotoxicity responses were similar between breakthrough and primary infection groups. These insights suggest that prior vaccination prevents overactivation of innate immune responses during breakthrough infections with discernible sex-specific patterns and underscore the potential of harnessing vaccines in mitigating pathologic immune responses resulting from overactivation.
ORGANISM(S): Homo sapiens
PROVIDER: GSE261862 | GEO | 2025/01/30
REPOSITORIES: GEO
ACCESS DATA